REFERENCE COPY
SANDIA REPORT C.Q

SAND91—1752 « UC—-705
Unlimited Release
Printed May 1991

PHYSLIB:
A C+ + Tensor Class Library

“"ll’ ’I’Suriiiﬁ’ il
Kent G. Budge SANDP 1- 1752
aeas
LNCLASSTF IED
Prepared by A3~ 1
Sandia National Laboratories 8&F STAC

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: A01

SAND91-1752 Distribution
Unlimited Release UC-705
Printed 10/9/91

PHYSLIB:
A C++ Tensor Class Library

Kent G. Budge
1431

Sandia National Laboratories
Albuquerque, NM 87185

Abstract

PHYSLIB is a C++ class library for general use in computational physics applications. It
defines vector and tensor classes and the corresponding operations. A simple change in the
header file allows the user to compile either 2-D or 3-D versions of the library.

Acknowledgment

The author acknowledges the assistance of J.S. Peery for reviewing this library and for
much discussion of general C++ programming issues.

Contents

ACKNOWIBAZIMENE ..ottt et e e e e e esae s e aeeaneeenees 4
COMEBILS «.veeieiteeeere ettt e e et e s b aeerssae s te e s e teeasaes e eeee 2 s e e s ee et aee e s ee e nsaesnneensaamnensseaesnnees 5
PIEIACE .o ettt ea e et st et aa et a st e een e e ba e e 7
SUIMMIATY ...ttt et ie e e e e s emer s an bt e sm e s ane e se e e s emmneeeamnnas 9
LR |1 1s (00 11110 1o 3o OO U S SO S SRR ORREIOR 11
1.1 Vector and Tensor Operations and Notation SUREPPTUPPRRRPR 11
FLLLT VBCROTS .ottt ettt e r e e e en e sras e rae e saan e e s 11

Lo1.2 TOMSOTS .. ettt e ettt e e e be et e e e v e sme e s b s e s eaeseeane e 12

1.1.3 Symmetric and Antisymmetric Tensors JOT O OUURR 14

2.

1.1.4 Vector and Tensor Components; Indicial Notation..........c...ccccrnrnenn.nn. 14

1.1.5 Einstein Summation CONVEntIonccccieeiivineeieniaseeesres e cecannee e 15
1.1.6 DIMenSIONaltYoooieiiiiiiieieciee e ccc et e e et an e e e e a e e rame e b e e 16
1.2 Object-Oriented Programming and the C++ Language........ et 17
1.2.1 Data ADSITACHONcuiiiiiiiiee e e cece e vt s mene e s e rameee e 18
1.2.2 Special Member Functions and Dynamic Memory Management.......... 18
1.2.3 Function and Operator Overloadingccooeveiiimeiiieninnee e 19
The PHYSLIB Library.......cccooeveeeneeee ettt et [21
2.1 ClaSS VECLOT ..ttt ettt en e p e n e b e sese et e e same s 21
2.1.1 Private Data Memberscc.ccoooiiiiiciieniinncrreenn et 21
2.1.2 Special Member FUNCHONSccooove i icercctrie s s 22
2.1.3 Utility FUNCHONS ..o e e e em e e et a e 24
2.2 Class TENSOT ...t e 25
22.1 Private Data Members ... i 25
2.2.2 Special Member FUnctionso.cooveenevesnseseenn. v iereene s esraseenes e 25
2.2.3 Utility Functionsccccocviiiiiinie e sres e e 31
2.3 Class SYMTENSOT ..oooviiiiiiee et e 32
2.3.1 Private Data MembeTsccocveieeiirieiiieceireee et rae e 32
2.3.2 Special Member Functionscccovceeevniirnnennenns et s 32
2.3.3 Utility FUNCHONSooiiiiiiieceii ettt 36
2.4 Class ANUTENSOT.....ociiiiii ettt s s e e e anees 37

2.4.1 Private Datd MEIMDETSooii oo eeeeceeeirace s e eere b re s e s s ss b s e s e ee e mranans 37

2.42 Special Member Functions ..o 37

2.4.3 Utility FUNCHONS ...c.ooiitiiiiiii et 40

2.5 Operator Overload FUnctions ... 41
2.6 MELNOAS ..ottt sttt e a e st e 50

2.7 Predefined CONnSIAnS ..o uiiiieir it eim et e 56

3. Using the PHYSLIB CIaSS€Scoiooirmiiiriesiiieernie e 59
3.1 Useless OPeTations........covueciiriiieicisiere it et 60
CONCIUSION ... eeieve e cmeetee et i e e ease e e sacrie et beseme e sb e e s saeon b saeeae e b e e e eateeat s aE e r b e e st s et 61
2SS (=) L1161 OO OO PO PP PP TP PP 63
Index of Operators and FUNCHONS.ocoiiieeiitni e 65
DTy n 10101 Lo o U P PO O R O PSPPI PP 69

Preface

C++ is the first object-oriented programming language which produces sufficiently effi-
cient code for consideration in computation-intensive physics and engineering applica-
tions. In addition, the increasing availability of massively parallel architectures requires
novel programming techniques which may prove to be relatively easy to implement in
C++. For these reasons, Division 1541 at Sandia National Laboratories is devoting consid-
erable resources to the development of C++ libraries.

This document describes the first of these libraries to be released, PHYSLIB, which de-
fines classes representing Cartesian vectors and (second-order) tensors. This library con-
sists of the header file physlib.h, the inline code file physlib.inl, and the source
file physlib.C. The library is applicable to both three-dimensional and two-dimension-
al problems; the user selects the 2-D version of the library by defining the symbol
TWO_D in the header file physlib.h and recompiling physlib.C and his own code.

Alternately, system managers may wish to provide duplicate header and object modules of
each dimensionality.

This code was produced under the auspices of Sandia National Laboratories, a federally-
funded research center administered for the United States Department of Energy on a non-
profit basis by AT&T. This code is available to U.S. citizens and institutions under re-
search, government use and/or commercial license agreements.

Federal agencies, universities, and other U.S. institutions who wish to support further de-
velopment of this code and its sister codes are encouraged to contact Division 1541, Sand-
ia National Laboratories. Division 1541 welcomes collaborative efforts with qualified
research institutions.

The PHYSLIB library is © 1991 Sandia Corporation.

(Intentionally Left Blank)

Summary

PHYSLIB defines the following classes:

class Vector Cartesian vectors

class Tensor Cartesian 2nd-order tensors

class SymTensor Cartesian 2nd-order symmetric tensors
class AntiTensor Cartesian 2nd-order antisymmetric tensors

Methods that are defined for these classes include the following:

Dot and outer products

Cross products for vectors

Other arithmetic operations

Duals (dot or double dot product with the permutation symbol)
Trace of tensors

Transpose of tensors

Determinants and inverses of tensors
Symmetric and antisymmetric part of tensors
Scalar invariants of tensors

Norms

Colon operator (scalar product of tensors)

Deviatoric part of tensors

10

(Intentionally Left Blank)

Introduction

1. Introduction

Almost every branch of theoretical physics makes use of the concepts of vectors and ten-
sors. Vectors are conceptually simple; they are quantities having both magnitude and di-
rection, such as the velocity of a particle. Tensors are conceptually more difficult. They

represent rules that relate one set of vectors to another, and they appear in many physical
formulae.

Division 1541 at Sandia National Laboratories recently began work on a new computer
code, RHALE++, which calculates the behavior of materials subjected to strong shock
waves. The equations describing the physics of strong shocks are vector and tensor equa-
tions. In the past, great effort has been required to correctly translate these equations into
computer code.

This document briefly reviews the mathematics of vectors and tensors; discusses the basic
difficulties in translating vector and tensor equations into computer code; and describes
how a new and very promising computer language, C++, has been used to alleviate these
difficulties, thereby producing reliable, reusable, and transparent computer code at a much
reduced cost in programmer effort.

1.1 Vector and Tensor Operations and Notation

We briefly review the basic concepts and language of vectors and tensors. A more com-
plete discussion can be found in [2].

1.1.1 Vectors

A vector is a physical quantity such as velocity that has both a magnitude (“five hundred
km/sec”) and a direction (“‘towards the northeast”). It may be written as a lowercase sym-
bol with an arrow over it, such as v. Quantities such as temperature or mass that have

magnitude but no direction are called scalars and are represented by lowercase symbols
without an arrow, such as a.

The magnitude or norm of a vector & is written as |4l and is a scalar, while its direction

may be written as a. The direction of a vector is itself a vector with magnitude 1 (called a
unit vector).

A vector may be multiplied by a scalar. The result is a vector with the same direction as

the original vector and with a magnitude equal to the product of the scalar and the magni-
tude of the original vector. That is,

if b=cithen |bl = lcllal and b = +z (1)

If ¢ <0, the resulting vector has the opposite direction from the original vector.

11

Introduction

Vectors may be added to or subtracted from each other; they obey the same algebraic rules
as real numbers under addition and subtraction. Vector addition may be visualized by pic-
turing each vector as an arrow with a length equal to its magnitude, as illustrated below:

Figure 1. Addition of Vectors

1\
+
S

S

a
The opposite of a vector is a vector with the same length but in the opposite direction.

Vectors may not be multiplied in the same sense as real numbers. However, several opera-
tions exist which are distributive and which are therefore spoken of as “products”. The in-
ner product (or dot product) of two vectors is a scalar and is written

Geb @

It is defined as the product of the magnitudes of the two vectors and the cosine of the angle
between them, that is,

v

aob = |allblcoss,,. 3)
\ eab

a
a

Thus, the dot product is zero if the vectors are perpendicular. The dot product is distribu-
tive and commutative, that is,

Ge (b+e) = deb+aed (Distributive law) @)

eh=hed (Commutative law) (5)
The outer product of two vectors is a tensor; it is discussed below.

1.1.2 Tensors

A tensor is a rule that turns a vector into another vector, and it is represented symbolically
by a boldface capital letter, such as A . We write

&=Ab (6)

12

Introduction

to indicate that when the tensor A is applied to the vector b, it returns the vector &. Not all
rules that turn vectors into other vectors are tensors; a tensor must be linear, that is, it must
be true for all z, », and ¢ that

A

A@G+b) = Ad+Ab D
and
A (c2) = cAd.)]

It is customary to regard the vector & in Equations (6) as the product of the tensor A and
the vector 5. We say that the vector b is left-multiplied by the tensor A . It is also possible
to write expressions of the form

¢ =bA ©)
in which the vector b is right-multiplied by the tensor A . If

Ad =aB (10)
for all vectors @, we say that A is the transpose of B and write

A=B. (11)

Tensors may be added and subtracted according to the usual algebraic rules. Addition is
defined such that

A=B+C iff Aa=Ba+Ca foralla (12)
The product of two tensors is defined such that
A = BC iff Ad = B(Ca) forall & (13)

The outer product of two vectors is a tensor and may be written

® b (14)

Qv

A:

It is defined by

A=a®b iff Ac= (het)a foral ¢ (15)

[

Note that the outer product is not commutative, unlike the inner product, since

EY Ry T
i®b = (b®a) . (16)

Many derived quantities in physics are expressed as tensors. For example, we observe in

the laboratory that a reflective surface exposed to a set of light sources feels a force which
depends on the orientation and area of the surface. 1If we form a vector 5 whose magnitude

13

Introduction

is equal to the surface area and whose direction is perpendicular to the surface, we find
that the force experienced by the surface is given by

f =P} (17)

where P is a tensor (the radiation pressure tensor) which depends only on the intensity and
location of the light sources relative to the location of the reflective surface.

Likewise, consider a body subjected to deformation. Let the displacement between two
nearby particles in the undeformed body be represented by the vector & and the displace-
ment between the same two particles after deformation be represented by the vector u'.
The two vectors are related by the expression

w = Ji (18)

where J 1s called the Jacobian tensor. We note that J may be different at different points in
the body.

1.1.3 Symmetric and Antisymmetric Tensors
Many tensors important in physics are symmetric; that is,

AT=A (19)
Likewise, there are important tensors which are antisymmetric, having the property

AT = —A. (20)

If a tensor is known to have one of these symmetry properties, calculations involving that
tensor can usually be simplified. In addition, it is sometimes useful to split a full tensor
into symmetric and antisymmetric parts via the formulae

Sym(A) = %(A +A7 (21)
Anti(A) = %(A _A" (22)

It 15 easily verified that these two tensors have the indicated symmetry properties and that
A = Sym(A)+ Anti(A).

1.1.4 Vector and Tensor Components; Indicial Notation

Computers are unable to handle vectors and tensors directly. Their hardware is designed to
add, subtract, multiply, and divide representations of real numbers.

Fortunately we can represent vectors and tensors as sets of real numbers. However, to do
so, we must establish an arbitrary frame of reference. We do this by selecting three mutual-

14

Introduction

ly orthogonal directions %, 9, and 2. These correspond to the x, y, and z axes of a Cartesian
coordinate system. We can then express any vector in the form

a=uax+a,y+a,z (23)

The three numbers a|, a,, and a, (the components of the vector) are real numbers and can
be processed by a computer. Using Equation (23), we can represent any vector operation
as a sequence of operations on sets of real numbers. We use the symbol g, to represent the
set of real numbers «,, a,, and as,.

Some computers are optimized to perform calculations on sets of real numbers; computer
scientists refer to these as vector computers, but the word “vector” is not being used in the
sense understood by physicists.

We can write any tensor in the form

A=A (R®) +A,(3®F) +A;(A® %)
+ Ay R +A,(I®F) +A4,, (G ®2) (24)
+ Ay (G®R) +A,(E®P) + A, (3@5)

Thus, a computer can treat a tensor as if it was an array of nine real numbers. These real

numbers are spoken of as the components of the tensor. We represent this set of numbers
by the symbol 4.

We thus have a way to handle vectors and tensors on computers, but at a price: we must re-
place each vector and tensor by a set of real numbers and each vector or tensor operation
by a (possibly extensive) sequence of operations on sets of real numbers. This sequence of
operations is written using indicial notation. For example, the inner or dot product of two
vectors is written in symbolic notation as

F=2adeb. 25)

It can be written in indicial notation as

3
r = Zaibi. (26)

where a; and b, are the components of the vectors & and . Proofs of the equivalence of

the symbolic and indicial representations of vector operations will not be presented in this
report.

1.1.5 Einstein Summation Convention

Sums over all values of an index, such as Equation (26), are so common that it is custom-
ary to adopt the Einstein summation convention. Under this convention, any term in which

5

Introduction

an index is repeated, such as a.p

b, 1 interpreted to mean a sum over all values of the index
i. That is,

3
a;b; (Einstein convention) < Zaibi (ordinary usage) 27

i=1
If more than one index is repeated, we have a multiple sum, e.g.,

33
a,-B,-jcj (Einstein convention) @Z Za,-Bijcj (ordinary usage) . (28)

i=1 j=1
We use the Einstein summation convention throughout this report.

1.1.6 Dimensionality

Physical space is three-dimensional, and the foregoing discussion reflects this fact. How-
ever, there are many physical situations where a high degree of spatial symmetry permits a
simplified treatment of vector and tensor calculations. RHALE++ therefore has been writ-
ten in 2-D and 3-D versions. In the 2-D version, one assumes either plane symmetry or
axisymmetry.

Plane symmetry represents the case in which there is perfect translational and reflective
symmetry along the # direction. Axisymmetry is the case in which rotational and reflective
symmetry exists around an axis in the z direction. In either case, certain components of
tensors are guaranteed to be zero in the calculations performed by RHALE++ and similar
programs.

To take advantage of this, the PHYSLIB library can be set up for either normal 3-D calcu-
lations or 2-D calculations. To set up PHYSLIB for 2-D calculations, one defines the mac-
ro TWO_D at the start of the file phys1ib. h; to set up for 3-D calculations, this macro is
left undefined.

The library code contains compiler directives that test this macros and compiles different
portions of the code depending on whether the macro is defined. Thus, when a 2-D pro-

gram is being compiled, the tensor components that are guaranteed to be zero can be omit-
ted, saving memory and computation time.

In addition, an integer constant, DIMENSION, is set to the number of dimensions (2 or 3).

16

Introduction

1.2 Object-Oriented Programming and the C++ Language

One of the characteristics of computational physics programs is their growing complexity.
It is not now uncommon for a production code to exceed one hundred thousand lines in
length when written in traditional programming languages such as FORTRAN. Such huge
codes are also found in the areas of advanced graphics and operating systems.

Large codes are extremely difficult to manage. To alleviate this problem, one has to rely
on a coherent, well-organized programming style. Programming style includes techniques
that do not change the basic calculations performed by a program and which might not
even alter the machine language translation.

The most obvious element of style is the incorporation of comments and indention. Com-
ments are sections of text that the compaler is instructed to ignore, but which convey clari-
fications and explanations to a human reader. Good programmers make extensive use of
commenting, especially in older languages; it is not uncommon for a well-written FOR-
TRAN program to consist of 50% comment lines. Indention is the intelligent use of white
space (blanks, tabs, and empty lines), which are ignored by the compiler, to indicate pro-
gram structure. It 1s also an important feature of good FORTRAN coding, where indention
helps delineate the structure of DO loops and IF-THEN constructs.

Unfortunately, commenting and indenting alone are not sufficient to render a code trans-
parent to the human reader. Modern programming languages therefore include grammar
that facilitates block-structured programming. Block-structured programs are broken
down into logical units, each of which is relatively easy to understand. For example, itera-
tive loops are written nowadays using a specific grammar that indicates that the loop is a
logical unit, GOTO statements are generally avoided, since they tend to blur the bound-
aries of logical units. An important part of block-structured programming is the care with
which the programmer breaks the code down into relatively small subroutines, each of

which is easy to understand, and builds a tree of subroutine calls to implement his algo-
rithm,

Block-structured programs may be written either in a top-down or a bottom-up fashion. In
top-down programming, one writes a program at the top level first, using calls to as-yet
nonexistent subroutines to represent major parts of the calculation; the first level of sub-
routines is then written the same way, writing each subroutine as a sequence of calls to
lower-level subroutines, and so on. In bottom-up programming, one builds the lowest-lev-
el subroutines first, then combines these into somewhat higher-level subroutines, and so
on. Both approaches have their merits.

The most recent trend in programming style is towards object-oriented programming.
Conventional computers are sequential; a single processor steps through a program, carry-
ing out one task at a time. Programs written in traditional programming languages there-
fore support the model of a program as a sequence of tasks. This is known as procedural
programming, because a sequence of procedures is being carried out,

17

Introduction

Modern supercomputers are not purely sequential. In particular, vector processors such as
Cray or Convex supercomputers process entire blocks of data in an assembly-line fashion.
Massively parallel computers such as MIMD machines have many processors which can
operate independently. For such computers, the sequential model is not ideal. Instead, one
uses an object-oriented approach in which the program is though of as a set of interacting
data objects. This approach has proven to be fruitful even on traditional sequential com-
puters. It seems to mesh well with the concept of block-structure programming; not only 1s
code divided into logical units, but so is data. Closely related to the concept of object-ori-
ented programming is the concept of data abstraction. This is the notion that a data struc-
ture should be treated as a coherent unit wherever possible, with only a few routines
accessing its individual components.

C++ is the first efficient high-level language with object-oriented capability to become
widely popular. Because well-written C++ code approaches the efficiency of conventional
C coding, C++ may prove to be the language of choice for large scientific computing
projects. A description of the C++ language is beyond the scope of this report. However,
we briefly describe the advantages of C++ below.

The definitive feature of C++ is the class [1]. This is essentially a programmer-defined
data type that supplements the standard data types (such as int, float, or double) that
are part of the language. A class is declared, usually in a header file, at which time the
compiler knows its characteristics; individual variables or instances of the class may then
be declared by the programmer.

1.2.1 Data Abstraction

A class declaration typically includes data members and specifies member access rules.
The data members are a set of floating numbers, integers, pointers, or instances of simpler
classes. For example, a class representing complex numbers would probably contain two
floating variables as data members: one for the real and one for the imaginary part of the
complex number. Each time a variable of a given class is declared, enough memory is set
aside to hold its data members.

Classes enforce data abstraction. Generally speaking, the data members of a class are di-
rectly accessible only to a set of functions enumerated within the class definition. These
functions are the only place where an instance of a class is not viewed as a coherent object.

The PHYSLIB library is built around the concept of data abstraction.
1.2.2 Special Member Functions and Dynamic Memory Management

The special member functions of a class are utility functions that create, destroy, or assign
values to an instance of a class. Thus, whenever a class variable is declared, a constructor
function is called to initialize the object. Likewise, when a class variable goes out of scope
and is no longer needed, a destructor is called to do any necessary cleanup before its mem-
ory is freed. This makes it possible to carry out sophisticated dynamic memory manage-
ment in a transparent manner. For example, a large array of floating numbers can be
represented by a class with constructor and destructor functions. The constructor func-

18

Introduction

tions, which are automatically called when a variable of the array class is declared, can al-
locate the appropriate amount of memory. The destructor, which is automatically called
when the variable goes out of scope, can return the memory to the system. The program-
mer sees none of this; he only writes a constructor and destructor function, and the compil-
er sees to it that they are called at the appropriate times.

PHYSLIB does not make use of such memory management mechanisms, but future re-

ports will discuss how memory management is carried out in more sophisticated classes
used in RHALE++.

If a class has no constructor functions, the compiler simply allocates memory for the data
members whenever an instance of the class is declared. Likewise, if a class has no destruc-

tor function, the compiler simply frees the memory allocated for an instance of a class
when 1t goes out of scope.

Other special member functions may be declared to assign values to an object. For exam-
ple, an instance of an array class would need to free its old storage area before allocating
new memory to receive a new value. If no assignment function is declared for a class, the
compiler simply copies the values of all the data members when an assignment is made.

1.2.3 Function and Operator Overloading

When data abstraction is implemented in less sophisticated programming languages, the
code tends to dissolve into many calls to a few privileged routines that manipulate individ-
ual components of the various data structures. Many of these routines implement distinct
operations on the data structures that could just as well be represented by arithmetic oper-
ators. For example, if data structures representing complex numbers are used in a C pro-
gram, there will be many calls to functions that implement complex addition and
multiplication.

The C++ language permits programmers to overload the standard set of operator symbols.
For example, the programmer can declare that the ‘*’ operator represents complex multi-
plication when applied to complex variables. This adds a new context-dependent meaning
to this symbol. The compiler can distinguish whether the ‘*’ represents ordinary floating-
point multiplication or complex multiplication by examining the type of its operands.

When an overloaded operator is used in this manner, the compiler replaces it with a call to
the appropriate function defined by the programmer. Thus, the actual machine code gener-
ated is not much different than that described above for a C program. However, the code

the programmer writes is much more aesthetically pleasing; and, when another program-
mer is trying to read and understand the code, aesthetics 1s everything.

The C++ language permits programmers to overload function names as well as operators.
Every function declaration includes the argument list, as with ANSI C. However, more
than one function with a given name can exist if they have different argument lists. When
one of the functions is called, the compiler selects the correct function based on the types

19

Introduction

of the arguments. If a function call has an argument list that does not match any function
by that name, the compiler reports an error.

Consider this example of a C code:

#include <math.h>
#include "complex.h"
main () {
struct Complex a = {3., 2.5}, b = {2., 0.}, c;
¢ = CSgrt(CAdd(CMult(a,a), CMult(b,b)));
fprintf ("The result is %f, %f\n", c.Real, c.Imag);

}

This short program evaluates and prints a complicated complex expression. Note the many
function calls needed to implement data abstraction.

In C++ one might have

#include <math.h>
#include "complex.h"
main () {
Complex a(3., 2.5), b(2., 0.), c;
c = sgrt{a*a + b*b);
fprintf ("The result is %£, %f\n", c.Real(), c.Imag());
}

This illustrates how the function calls have been replaced by more transparent operator
notation. The actual machine code generated by the compiler replaces the operators with
the appropriate function calls. In addition, the sqrt () function has been overloaded; the
two versions are double sqrt (const double) and Complex sqgrt(const
Complex). The first version takes and returns floating point numbers, while the second
takes and returns complex numbers. In the program above, the second version has been
used, which the compiler correctly recognizes from the fact that a*a + b*b is an ex-
pression with type Complex.

20

- The-PHYSLIB Library

2. The PHYSLIB Library

The PHYSLIB library consists of three files: a header file, physlib.h; an inline func-
tion file, physlib.inl; and a C++ source file, physlib.C.

The header file contains C++ code that defines the four classes described below. It must be
included at the start of any C++ program that wishes to use these classes. The header file
in turn includes the inline function file, which contains additional C++ code to define the
various operator overloads and methods that are defined for the PHYSLIB classes. The
source file contains a few large functions that are not appropriate for inlining, and it is
compiled and linked with the users’ code.

Inlining is a way to reduce computation time at the cost of increased memory usage. An
inline function is not actually called whenever it is referenced; instead, a local copy of the
function body is inserted in the calling routine by the compiler. This eliminates the over-
head associated with making a function call and permits global optimizatiens (such as
vectorization) that are normally inhibited by function calls. The trade-off is that there are
numerous local copies of the function in the code rather than one global copy. If the func-
tion is very simple and is called many times, as is usually the case for PHYSLIB func-
tions, the savings in computation time are worth the increase in memory usage.

In each case, the reference frame is implied by the values used to initialize the vectors and
tensors in a calculation. In addition, it is assumed that all floating numbers are represented
in double precision. This is wasteful on intrinsically double-precision machines such as a
Cray; the Cray version of the library will replace double with float everywhere.

2.1 class Vector

This class represents Cartesian vectors, which are quantities having both magnitude and
direction.

Symbolic Notation: & Indicial Notation: a,

2.1.1 Private Data Members

double x; X component of vector (a,)
double y; Y component of vector (a,)
double z; Z component of vector (a,)

The Z component is required even in the 2-D version of the library. This is because
RHALE-++ and some other finite element codes use a rotation algorithm that requires vec-
tors with Z components.

2]

The PHYSLIB Library

2.1.2 Special Member Functions

Vector (void) ;

Sample code:

Vector a; // Default constructor called
// when a is declared

This is the default constructor for instances of the Vector class. It does nothing
to initialize the vector. It is declared only to let the compiler know that initializa-
tion can be skipped.

Vector (const double, const double, const double);

Sample code:

Vector a(5., 6., 2.);

Construct a vector with the given components.

Vector (const Vector&) ;

Sample code:

Vector a;
Vector b = a; // Construct and initialize

This is the copy constructor for objects of class Vector. It is defined mainly to en-
hance vectorization on CRAY computers.

Vector& operator=(const Vector&);

Sample code:

Vector a, b;
a = b;

This is the assignment operator for objects of class Vector. It is defined mainly to
enhance vectorization on CRAY computers.

double X(void) const;

22

The PHYSLIB Library

Symbolic notation: G e 2 Indicial notation: a,
Sample code:

Vector a;

printf ("The X component of a is %f\n", a.X());

double Y (void) comnst;
Symbolic notation: a Indicial notation: a,
Sample code:

Vector a;

printf("The Y component of a is %f\n", a.¥());

double Z(void) const;
Symbolic notation: a e 2 Indicial notation: a,
Sample code:

Vector a;

printf ("TheZ component of a is %f\n", a.zZ());

void X(const double);

Symbolic notation: None Indicial notation: a, « s

Sample code:

Vector a;

a.X((2.); // set X component of a to 2.

void Y {(const double);

Symbolic notation: None Indicial notation: a, « s
Sample code:

Vector a;

23

The PHYSLIB Library

a.Y(2.); // set Y component of a to 2.

void Z(const double);

Symbolic notation: None Indicial notation: a,« s
Sample code:
Vector a;
a.z(2.); // set Z component of a to 2.

Provide access to the components of a vector. This is required chiefly for I/O but
is also a means for letting future classes work with vectors without requiring a
huge list of friend functions in the vector class definition. It does not violate the
idea of data abstraction, since nonprivileged functions must still access the com-
ponents of a vector through a functional interface.

2.1.3 Utility Functions

24

int fread(Vector&, FILE*);
int fwrite(const Vector, FILE*);
int fread(Vector*, int, FILE*);

int fwrite{const Vector*, const int, FILE*);

Sample code:

Vector a, b, c[2], d[5];
FILE* InFile, OutFile;
fread (a, InFile);

fread (c, 2, InFile);
fwrite (b, OQutFile);
fwrite (d, 5, OutFilej;

These overloads provide a convenient interface to the fread () and fwrite ()
library functions for binary input/output. The second version of each is intended
for arrays of vectors (e.g., Vector c[2]; declares an array of two vectors).

These functions were written to be as consistent as possible with the standard
fread() and fwrite () functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written.

The PHYSLIB Library

2.2 class Tensor

This class represents general Cartesian 2nd-order tensors. In the 2-D version, the off-diag-
onal z terms A ,, A,,, Ay, and A,, are omitted. The diagonal z term, A4, is needed in 2-D
finite element codes.

Symbolic notation: A Indicial notation: A,

2.2.1 Private Data Members

double xx; xx component of tensor (4,,)
double xy; Xy component of tensor (4,,)
double xz; xz component of tensor (4,,)
double yx; yz component of tensor (4,,)
double yy; yy component of tensor (A,,)
double yz; yz component of tensor (A,;)
double zx; zx component of tensor (4,,)
double zy; zy component of tensor (4,,)
double zz; zz component of tensor (4,,)

2.2.2 Special Member Functions

Tensor (void) ;

Sample code:

Tensor a; // Declare an uninitialized
// tensor.

Default constructor for instances of the Tensor class.

Tensor (const double, const double, const double, const
double, const double, const double, const double,
const double, const double);

Sample code:

25

The PHYSLIB Library

Tensor a(2., 3., 5.,
4., 6., 4.,
1., 9., 11.);

Construct a tensor with the given components. The arguments corresponding to
off-diagonal z terms are omitted in the 2-D version.

Tensor {const Tensor&) ;

Sample code:

Tensor a;

Tensor b = a; // Construct and initialize

This is the copy constructor for objects of class Tensor. It is defined mainly to en-
hance vectorization on CRAY computers.

Tensor& operator=(const Tensor&) ;

Sample code:

Tensor a, b;
a = b;

This is the assignment operator for objects of class Tensor. It is defined mainly to
enhance vectorization on CRAY computers.

Tensor (const SymTensor) ;

Tensor {const AntiTensor) ;

Sample code:

SymTensor a;
AntiTensor b;
Tensor ¢ = a, d = b;

Convert a symmetric or antisymmetric tensor to full tensor representation. These
operators become standard conversions that the compiler invokes implicitly
where needed. However, most operators are explicitly defined for mixed tensor
types, since this is more efficient.

26

The PHYSLIB Library

These conversions are somewhat dangerous, since useless operations such as
Trans (SymTensor) or Tr (Ant iTensor) will be accepted by the compiler.
The worst consequence of permitting these conversions is that operations such as
Inverse (AntiTensor) will be attempted and result in a singular matrix er-
ror. The RHALE++ development team felt that, since these conversions are so
natural, they should be included in PHYSLIB in spite of the potential dangers.

Tensor& operator=(const SymTensor) ;
Tensor& operator=(const AntiTensor) ;
Sample code:

SymTensor a;

AntiTensor b;

Tensor c, d;

c = a;

d = b;

Assign a symmetric or antisymmetric tensor value to a preexisting tensor vari-
able. If these operations were not defined, the compiler would call the conversion
constructors defined above and assign the result, which is less efficient than as-
signing the values directly.

double XX (void) const;

Symbolic notation: A% Indicial notation: A,
Sample code:

Tensor A;

printf ("The XX component of A is %f", A.XX());

double XY (void) const;

Symbolic notation: Ay Indicial notation: A,
Sample code:

Tensor Aj;

27

The PHYSLIB Library

printf ("The XY component of A is %f",

double XZ(void) const;

Symbolic notation: %A Indicial notation: A,

Sample code:

Tensor A;

printf ("The XZ component of A is %f*,

double YX(void) const;

Symbolic notation: yA % Indicial notation: A,,

Sample code:

Tensor A;

printf ("The YX component of A is %f",

double YY(void) const;
Symbolic notation: 3A§ Indicial notation: A,
Sample code:

Tensor A;

printf ("The YY component of A is %f",

double YZ(void) const;

Symbolic notation: A Indicial notation: A.,

Sample code:

Tensor A;

printf (*"The YZ component of A is %f",

double ZX(void) const;

28

AXY());

A.XZ());

A YX());

A.YY()):

AYZ());

The PHYSLIB Library

Symbolic notation: 2A % Indicial notation: Ay

Sample code:

Tensor A;

printf ("The ZX component of A is %f", A.ZX());

double ZY(void) const;
Symbolic notation: A% Indicial notation: Ay,
Sample code:

Tensor A;

printf ("The 2ZY component of A is %f", A.ZY());

double ZZ(void) const;

Symbolic notation: :A% Indicial notation: Ay,

Sample code:

Tensor A;

printf ("The ZZ component of A is %f", A.ZZ());

vold XX {const double) ;

Symbolic notation: None Indicial notation: A, « s
Sample code:
Tensor A4;
A.XX(3.); // Set XX component of A to 3.

void XY (const double);

Symbolic notation: None Indicial notation: A\, « s

Sample code:

Tensor A;

29

The PHYSLIB Library

AXY(3.); // Set XY component of A to 3.

void XZ (const double);

Symbolic notation: None Indicial notation: Ay« s
Sample code:
Tensor A;
A.XZ(3.); // Set XZ component of A to 3.

void YX(const double);

Symbolic notation: None Indicial notation: A, « s
Sample code:
Tensor A;
A.YX(3.); // Set YX component of A to 3.

void YY (const double);

Symbolic notation: None Indicial notation: A,, « s

Sample code:

Tensor A;

A.YY(3.); // Set YY component of A to 3.

void YZ{const double);

Symbolic notation: None Indicial notation: A,; « s
Sample code:
Tensor A;

A.YZ(3.); // Set YZ component of A to 3.

void ZX(const double);

Symbolic notation: None Indicial notation: Ay « s

30

The PHYSLIB Library

Sample code:

Tensor A;

A.ZX(3.); // Set ZX component of A to 3.

void ZY{(const double);

Symbolic notation: None Indicial notation: A,, « s
Sample code:
Tensor A;
A.ZY(3.); // Set ZY component of A to 3.

void ZZ (const double);

Symbolic notation: None Indicial notation: Ay, « s
Sample code:
Tensor A;
A.Z2Z(3.); // Set 727 component of A to 3.

Provide access to components of a tensor through a functional interface. The
functions corresponding to off-diagonal z terms do not exist in the 2-D version of
the library, since these components always vanish in 2-D finite element codes.

2.2.3 Utility Functions

int fread(Tensor&, FILE*);

int fwrite(const Tensor, FILE*);

int fread(Tensor*, int, FILE*);

int fwrite(const Tensor*, const int, FILE*);
Sample code:

Tensor a, b, c[2], 4[5];
FILE* InFile, OutFile;
fread (a, InFile);

fread (c, 2, InFile);

31

The PHYSLIB Library

fwrite (b, OutFile);
fwrite (d, 5, OutFile);

These overloads provide a convenient interface to the fread () and fwrite ()
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread() and fwrite () functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written,

2.3 class SymTensor

This class represents symmetric tensors. By providing a separate representation of sym-
metric tensors, we save both memory and computation time, since a symmetric tensor has
fewer independent components. Since symmetric tensor are simply a special case of gen-
eral tensors, they share the same notation and operations.

Symbolic notation: A Indicial notation: A;

2.3.1 Private Data Members

double xx; xx component of a symmetric tensor (4,,)
double xy; Xy component of a symmetric tensor (A, = A,;)
double xz; xz component of a symmetric tensor (4,; = 4,)
double yy: yy component of a symmetric tensor (4,,)
double yz; yz component of a symmetric tensor (4,; = A,,)
double zz; zz component of a symmetric tensor (4,;)

2.3.2 Special Member Functions

SymTensor (void) ;
Sample code:

SymTensor a; // Construct an uninitialized

// SymTensor.

32

The PHYSLIB Library

Default constructor for instances of the class SymTensor.

SymTensor (const double, const double, const double,
conzt double, const double, const double);

Sample code:
SymTensor a(l., 5., 3.,
4., 6.,
5.):

Construct a symmetric tensor with the given components. The arguments corre-
sponding to off-diagonal z components are omitted in the 2-D version.

SymTensor (const SymTensor&) ;
Sample code:

SymTensor a;
SymTensor b = a; // Construct and initialize

This is the copy constructor for objects of class SymTensor. It is defined mainly
to enhance vectorization on CRAY computers.

SymTensor& operator=(const SymTensork);

Sample code:

SymTensor a, b;

a = b;

This is the assignment operator for objects of class SymTensor. It is defined
mainly to enhance vectorization on CRAY computers.

double XX (void) const;

Symbolic notation: $A % Indicial notation: A,

Sample code:

33

The PHYSLIB Library

SymTensor A;

printf (*The XX component of A is %f", A.XX());

double XY (void) const;
Symbolic notation: A3 Indicial notation: A,,
Sample code:

SymTensor A;
printf ("The XY component of A is %£f", A.XY());

double XZ(void) const;

Symbolic notation: A2 Indicial notation: A,

Sample code:

SymTensor A;
printf ("The XZ component of A is %f", A.XZ());

double YY(void) const;
Symbolic notation: A9 Indicial notation: Ay,
Sample code:

SymTensor A;
printf ("The YY component of A is %f", A.YY());

double YZ(void) const;
Symbolic notation: A7 Indicial notation: A,,
Sample code:

SymTensor A;

printf ("The YZ component of A is %f", A.YZ());

34

The PHYSLIB Library

double ZZ(void) const;

Symbolic notation: A% Indicial notation: Ay
Sample code:

SymTensor A;

printf ("The ZZ component of A is %£f", A.ZZ());

void XX (const double) ;

Symbolic notation: None Indicial notation: A, « s

Sample code:

SymTensor A;

A.XX(3.); // Set XX component of A to 3.

void XY {const double);

Symbolic notation: None Indicial notation: A, < s

Sample code:

SymTensor A;

A.XY(3.); // Set XY component of A to 3.

void XZ (const double);

Symbolic notation: None Indicial notation: A, « s
Sample code:

SymTensor A;

A.XZ(3.); // Set XZ component of A to 3.

void YY{(const double);

Symbolic notation: None Indicial notation: Ay, « s

Sample code:

35

The PHYSLIB Library

SymTensor A;

A.YY(3.); // Set YY component of A to 3.

void YZ(const double);

Symbolic notation: None Indicial notation: Ay, s

Sample code:

SymTensor A;

A.YZ(3.); // Set YZ component of A to 3.

void ZZ(const double);

Symbolic notation: None Indicial notation: Ay« s

Sample code:

SymTensor A;

A.27Z(3.); // Set ZZ component of A to 3.

Provide access to components of a symmetric tensor through a functional inter-
face. The functions corresponding to off-diagonal z terms do not exist in the 2-D
version of the library, since these components always vanish in 2-D finite ele-

ment codes.

2.3.3 Utility Functions

int fread(SymTensor&, FILE*);

int fwrite(const SymTensor, FILE*);

int fread(SymTensor*, int, FILE*);

int fwrite(const SymTensor*, const int,

Sample code:

SymTensor a, b, c[2], d[5];
FILE* InFile, OutFile;

fread (a, InFile);

36

FILE*) ;

The PHYSLIB Library

fread (c, 2, InFile);
fwrite (b, OutFile);
fwrite (d, 5, OutFile);

These overloads provide a convenient interface to the fread () and fwrite ()
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread () and fwrite() functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written.

2.4 class AntiTensor

This class represents antisymmetric tensors. By providing a separate representation, we
save quite a lot of memory and computation time. Since antisymmetric tensors are a spe-
cial case of general tensors, the notation and operators are identical.

Symbolic notation: A Indicial notation: A

2.4.1 Private Data Members

double xy; xy component of the tensor (A4,, = —-4,,)
double xz; xz component of the tensor (4,, = -A;)
double yz; yz component of the tensor (4,; = -A3)

24.2 Special Member Functions

AntiTensor (void) ;

Sample code:

AntiTensor A: // Construct an uninitialized
// AntiTensor

Default constructor for instances of the class AntiTensor.

AntiTensor (const double, const double, const double);

37

The PHYSLIB Library

Sample code:

AntiTensor A(-2., -3., -1.);

Construct an antisymmetric tensor with the given components. The second and
third arguments are omitted in 3-D.

AntiTensor (const AntiTensor&) ;

Sample code:

AntiTensor a;
AntiTensor b = a; // Construct and initialize

This is the copy constructor for objects of class AntiTensor. It is defined mainly
to enhance vectorization on CRAY computers.

AntiTensor& operator={const AntiTensor&) ;

Sample code:

AntiTensor a, b;
a = b;

This is the assignment operator for objects of class AntiTensor. It is defined
mainly to enhance vectorization on CRAY computers.

double XY (void) const;

Symbolic notation: 2A 3 Indicial notation: A,,
Sample code:

AntiTensor A;

printf ("The XY component of A is %f", A.XY());

double XZ{void) const;

Symbolic notation: 3A? Indicial notation: A,,

Sample code:

38

The PHYSLIB Library

AntiTensor A;

printf ("The XZ component of A is %f", A.XZ());

double YZ(void) const;

Symbolic notation: A2 Indicial notation: A,,
Sample code:

AntiTensor A;

printf ("The YZ component of A is %f", A.YZ());

void XY (const double};

Symbolic notation: None Indicial notation: A, < s
Sample code:

AntiTensor A;

A.XY(3.); // Set XY component of A to 3.

void XZ(const double);

Symbolic notation: None Indicial notation: A5« s
Sample code:

SymTensor A;

A.XZ(3.); // Set XZ component of A to 3.

void YZ(const double);

Symbolic notation: None Indicial notation: A, < s
Sample code:

AntiTensor A;

A.YZ(3.); // Set YZ component of A to 3.

39

The PHYSLIB Library

Provide access to components of an antisymmetric tensor through a functional in-
terface. The functions corresponding to off-diagonal z terms do not exist in the 2-
D version of the library, since these components always vanish in 2-D finite ele-
ment codes.

2.4.3 Utility Functions

40

int
int
int

int

fread (AntiTensor&, FILE*);
fwrite(const AntiTensor, FILE*);

fread (AntiTensor*, 1int, FILE*);

fwrite(const AntiTensor*, const int,

Sample code:

AntiTensor a, b, c[2], d[5];
FILE* InFile, OutFile;

fread (a, InFile);

fread (c, 2, InFile);

fwrite (b, QutFile);

fwrite (d, 5, OutFile);

FILE*) ;

These overloads provide a convenient interface to the fread () and fwrite()
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread() and fwrite () functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written.

The PHYSLIB Library

2.5 Operator Overload Functions

Vector operator-(void) const;

Symbolic notation: —a Indicial notation: -u,

Sample code:
Vector a, b;
a = -b;

Return the opposite of a vector.

Tensor operator- (void) const;
SymTensor operator-{(void) const;
AntiTensor operator-(void) const;
Symbolic notation: -A Indicial notation: -A;;
Sample code:

Tensor A, B;

A = -B;

Retarn the opposite of a tensor.

Vector operator*{const Vector, const double);
Vector operator*(const double, const Vector);
Symbolic notation: ac Indicial notation: a;,c
Sample code:
Vector a, b;
double c¢;

a=>b * c;

Return the product of a scalar and a vector. This operation commutes (as can be
seen from its indicial representation) but C++ makes no assumptions about com-
mutivity of operations: hence, both orderings must be defined. C++ does assume

41

The PHYSLIB Library

the usual rules of associativity for overloaded operators (thus a*b*c means

(a*b) *c or (Zeb)2).

Vector& operator*=(const double};

Symbolic notation: a « ac Indicial notation: a; < a,
Sample code:

Vector a;
double c;
a *= c;

Replace a vector by its product with a scalar.

Vector operator/(const Vector, const double);

Symbolic notation: a/c Indicial notation: a,/c

Sample code:

Vector a, b;
double c;
a = b/c;

Return the quotient of a vector with a scalar. The case ¢ = 0 results in a divide-
by-zero error, which is handled differently on different computers.

Vector& operator/={(const double);

Symbolic notation: 4« a/c Indicial notation: a; < a,/c

Sample code:

Vector aj
double c;
a /= c;

Replace a vector by its quotient with a scalar. The case ¢ = 0 results in a divide-
by-zero error, which is handled differently on different computers.

42

The PHYSLIB Library

double operator* (const Vector, const Vector);
Symbolic notation: i b Indicial notation: ab,
Sumple code:
Vector a, b;
double c;
cC = a * b;

Return the dot or inner product of two vectors.

Tensor operator%(const Vector, const Vector);

Symbolic notation: & ® b Indicial notation: ab;

Sample code:

Vector a, b;
Tensor cC;
c =a % b;

Return the tensor or outer product of two vectors. The operator ‘%’ represents the
modulo operation when applied to integers. It was selected to represent the outer
product of vectors because the compiler assigns it the same precedence as multi-
plication.

Vector operator+ (const Vector, const Vector);

Symbolic notation: a+b Indicial notation: a,+b,

Sample code:
Vector a, b, c;
a=>b + c;

Return the sum of two vectors.

The PHYSLIB Library

Vector& operator+=(const Vector);
Symbolic notation: &« a+b Indicial notation: a, < a; + b,
Sample code:

Vector a, b;

a += b;

Replace a vector by its sum with another vector.

Vector operator-{(const Vector, const Vector);
Symbolic notation: & - b Indicial notation: a; - b,
Sample code:

Vector a, b, c;
a=>b - c;

Return the difference of two vectors.

Vector& operator-={(const Vector);

Symbolic notation: 4« a-b Indicial notation: a, < a,— b

Sample code:

Vector a, b;
a—:b;

Replace a vector by its difference with a vector.

Tensor operator* (const Tensor, const double);
SymTensor operator* {const SymTensor, const double);
AntiTensor operator* {(const AntiTensor, const double);
Tensor operator* (const double, const Tensor);
SymTensor operator* (const double, const SymTensor) ;

AntiTensor operator* (const double, const AntiTensor) ;

44

The PHYSLIB Library |

Symbolic notation: Ac Indicial notation: Ac
Sample code:

Tensor A, B;
double c;
B =2 * ¢c;

Return the product of a tensor with a scalar.

Tensor& operator*=(const double);
SymTensor& operator*=(const double);
AntiTensor& operator*=(const double);

Symbolic notation: A « Ac Indicial notation: A; « A;c
Sample code:

Tensor A;
double c¢;
A *= c;

Replace a tensor by its product with a scalar.

Tensor operator/(const Tensor, const double);
SymTensor operator/(const SymTensor, const double);
AntiTensor operator/{const AntiTensor, const double);

Symbolic notation: A /c Indicial notation: A i€

Sample code:

Tensor A, B;
double c;
B = A/c;

Return the quotient of a tensor with a scalar. The case ¢ = 0 results in a divide-
by-zero error, which is handled differently by different computers.

45

The PHYSLIB Library

Tensor operator/=(const double};
SymTensor& operator/=(const double);
AntiTensor& operator/=(const double);

Symbolic notation: A < A/c Indicial notation: A;«A,/c
Sample code:

Tensor A;

double c;

A /= c;

Replace a tensor by its quotient with a scalar. The case ¢ = 0 results in a divide-
by-zero error, which is handled differently by different computers.

Vector operator* (const Tensor, const Vector);
Vector operator* {const AntiTensor, const Vector);
Vector operator* (const SymTensor, const Vector);
Symbolic notation: Ab Indicial notation: Ab,
Sample code:
Tensor A;
Vector b, c;
cC = A * Db;
Return the result of left-multiplying a vector by a tensor. There are three cases,

corresponding to the three varieties of tensor implemented in PHYSLIB; all are
identical in notation and usage, however.

Vector operator* (const Vector, const Tensor) ;
Vector operator* (const Vector, const AntiTensor);
Vector operator* (const Vector, const SymTensor) ;

Symbolic notation: aB Indicial notation: a;B;

Sample code:

46

The PHYSLIB Library

Vector a;
Tensor b, c;
c = a * b;

Return the result of right-multiplying a vector by a tensor.

Tensor operator* (const Tensor, const Tensor) ;

Tensor operator* (const SymTensor, const Tensor) ;
Tensor operator* (const Tensor, const SymTensor) ;
Tensor operator* (const SymTensor, const SymTensor) ;
Tensor operator* (const AntiTensor, const Tensor) ;
Tensor operator* (const Tensor, const AntiTensor) ;
Tensor operator* (const AntiTensor, const SymTensor) ;
Tensor operator* (const SymTensor, const AntiTensor) ;

Symbolic notation: AB Indicial notation: A;B;
Sample code:

Tensor A, B, C;
C = A * B;

Return the product of a tensor with a tensor.

Tensor operator+{const Tensor, const Tensor):;

Tensor operator+ (const SymTensor, const Tensor);
Tensor operator+ (const Tensor, const SymTensor) ;
SymTensor operator+(const SymTensor, const SymTensor);
Tensor operator+(const AntiTensor, const Tensor) ;
Tensor operator+(const Tensor, const AntiTensor);
Tensor operator+(const AntiTensor, const SymTensor) ;
Tensor operator+{(const SymTensor, const AntiTensor) ;

AntiTensor operator+(const AntiTensor, const AntiTen-
sor) ;

47

The PHYSLIB Library

Symbolic notation: A +B Indicial notation: A;+B,;
Sample code:

Tensor A, B, C;
C = A + B;

Return the sum of two tensors.

Tensor& operator+=(const Tensor) ;

Tensor& operator+={(const SymTensor) ;
SymTensor& operator+=(const SymTensor) ;
Tensor& operator+=(const AntiTensor) ;
AntiTensor& operator+={const AntiTensor);

Symbolic notation: A « A +B Indicial notation: A;; < A,;+B;
Sample code:

Tensor A, B;
A += B;

Replace a tensor by its sum with another tensor.

Tensor operator-{(const Tensor, const Tensor);

Tensor operator-(const SymTensor, const Tensor);
Tensor operator- (const Tensor, const SymTensor) ;
SymTensor operator-(const SymTensor, const “ymTensor);
Tensor operator-(const AntiTensor, const ‘tensor);
Tensor operator-(const Tensor, :onst AntiTensor);
Tensor operator-(const AntiTensor, const SymTensor);
Tensor operator-{(const SymTensor, const AniiTeiiior);

AntiTensor operator-{(const AntiTeusor, const AntiTen-
sor) ;

Symbolic notation: A -B [ndicial notation: A;;~ 8B,

48

The PHYSLIB Library

Sample code:

Tensor A, B, C;
C = A - B;

Return the difference of two tensors.

Tensor& operator-=(const Tensor);

Tensor& operator-=(const SymTensor) ;
SymTensor& operator-=(const SymTensor);
Tensor& operator-={(const AntiTensor);
AntiTensor& operator-=(const AntiTensor);

Symbolic notation: A «— A ~B Indicial notation: A;« A;;-B;
Sample code:

Tensor A, B;
A -= B;

Replace a tensor by its difference with another tensor.

49

The PHYSLIB Library

2.6 Methods

Vector Cross(const Vector, const Vector) ;

Symbolic notation: axb Indicial notation: e_ab,

Sample code:

Vector a, b, c;
c = Cross(a, b);

Vector or cross product of two vectors. The symbol e, is the permutation sym-

bol, which is O if any of the i, j, or k are equal, 1 if they are an even permutation
of the sequence 1, 2, 3, and -1 if they are an odd permutation of the sequence 1, 2,
3. For example, €,,, = 0; €,,, = 1;and ¢,,, = —1. The cross product is distributive

and associative but not commutative.

Vector Dual (const Tensor) ;
Symbolic notation: Dual(A) Indicial notation: e A

Sample code:

Tensor A;
Vector b;
b = Dual(a);
Any tensor A can be split into a symmetric part % (A +A") and an antisymmetric

part %(A —A"). The dual of a tensor is a vector which depends uniquely on its
antisymmetric part.

AntiTensor Dual (const Vector);
Symbolic notation: Dual (2) Indicial notation: €,xde
Sample code:

Vector a;
AntiTensor B;

B = Dual(a);

50

The PHYSLIB Library

A

Dual of a vector. It can be proved that Dual(Dual(@)) = 2a. The concept of the dual

is closely related to the cross product, since bDual @) = i x b.

double Norm(const Vector) ;

Symbolic notation: |al Indicial notation: Ja,a,
Sample code:

Vector a;
double b;
b = Norm(a);

Returns the magnitude or norm of a vector. This is calculated as the square root
of the dot product of the vector with itself.

double Norm(const Tensor) ;

double Norm(const SymTensor) ;

double Norm{const AntiTensor) ;

Symbolic notation: |A| Indicial notation: JA;A,

Sample code:

Tensor A;
double c¢;
c = Norm(A);

Returns the norm of a tensor. This is calculated as the square root of the scalar
product of the tensor with itself.

double Det (const Tensor) ;

double Det (const SymTensor) ;

Symbolic notation: det [A] Indicial notation: Le

6 il_kelmnAilAijkn

Sample code:

Tensor A;

51

The PHYSLIB Library

double c;
c = Det(A);

Determinant of a tensor. It is always zero for an antisymmetric tensor.

Tensor Inverse(const Tensor) ;

SymTensor Inverse(const SymTensor) ;
Symbolic notation: A™
Sample code:

Tensor A, B;
B = Inverse(A);

Inverse of a tensor. If the tensor is singular, a divide-by-zero error will result
(which may be ignored on machines using the IEEE floating point standard). An-
tisymmetric tensors are always singular.

double Tr (const Tensor) ;
double Tr(const SymTensor) ;
Symbolic notation: TrA Indicial notation: A,

Sample code:

Tensor A;
double c;
c = Tr(A);

Trace of a tensor. The trace of an antisymmetric tensor is always zero.

Tensor Trans (const Tensor) ;
Symbolic notation: A" Indicial notation: 4
Sample code:

Tensor A, B;

B = Trans(A);

52

The PHYSLIB Library

Transpose of a tensor. By definition, the transpose of a symmetric tensor is the

tensor, while the transpose of an antisymmetric tensor is the opposite of the ten-
SOT.

SymTensor Sym(const Tensor);

Symbolic notation: ,—i (A + A" Indicial notation: % (A;+A;)

Sample code:

Tensor A, B;
B = Sym(A);

Symmetric part of a tensor.

AntiTensor Anti (const Tensor) ;
Symbolic notation: %(A - A"y Indicial notation: %(A,-,-—Aj,-)

Sample code:

Tensor A, B;
B = Anti(A);

Antisymmetric part of a tensor.

double Colon(const Tensor, const Tensor);
double Colon(const Tensor, const SymTensor) ;
double Colon(const SymTensor, const Tensor);
double Colon(const SymTensor, const SymTensor)}
double Colon(const Tensor, const AntiTensor);
double Colon(const AntiTensor, const Tensor) ;
double Colon{const AntiTensor, const AntiTensor);
Symbolic notation: A:B Indicial notation: A;B,;

Sample code:

[
(OS]

The PHYSLIB Library

Tensor A, B;
double c;

¢ = Colon(a, B);

Inner or scalar product of two tensor, also written Tr(A"B). The scalar product of
a symmetric and an antisymmetric tensor is always zero.

Tensor Deviator (const Tensor) ;

SymTensor Deviator (const SymTensor) ;

Symbolic notation: A — %Tr(A)l Indicial notation: A;;- %AHSU

Sample code:
Tensor A, B;

B = Deviator(A);

Deviatoric part of a tensor. The tensor 1 is the identity tensor, which is the unique
tensor that transforms any vector into itself and whose components are represent-

ed by the Kronecker delta 8. The deviator of an antisymmetric tensor is the ten-
sor itself.

double It (const Tensork) ;
double It (const SymTensor&) ;
double It (const AntiTensor&);
Symbolic notation: 1, = Tr(A) Indicial notation: A,

Sample code:

Tensor A;

double c;

c = It(a);
double IIt (const Tensor&) ;
double IIt (const SymTensoré&);

double IIt(const AntiTensor&) ;

54

The PHYSLIB Library

Symbolic notation: 11, = %(IAIZ— (TrA)?) Indicial notation: %(A,-jA,-j— AwD

Sample code:
Tensor A;

double c¢;

c = IIt(A);

double IIIt(const Tensor&) ;
double IIIt(const SymTensoré&) ;

double IIIt(const AntiTensor&) ;

Symbolic notation: 1, = DetA Indicial notation: éeijke,mnA,.,Aijkn

Sample code:
Tensor A;
double c;

c = IITt(A);

Scalar invariants of a tensor. These are the coefficients appearing in the charac-
teristic equation of a tensor, They are the only three independent scalars that can
be formed in a frame-independent manner from a single tensor; all other scalars
that can be formed from a tensor are functions of the scalar invariants.

The first invariant is a synonym for the trace; the third is a synonym for the deter-
minant. Only the second invariant is nonzero for an antisymmetric tensor.

The characteristic equation itself takes the form
A I - A-1, =0
RN T AL AT ¢ = 29)
and its roots are the principal values of the tensor.

Tensor Eigen (const SymTensor, Vector&) ;

This function returns the orthonormal tensor whose columns are the eigenvectors
of the given symmetric matrix. The principal values are placed in the vector spec-
ified by the second argument. Thus, if

A = Eigen(B, ¢)) (30

55

The PHYSLIB Library

then

D =ATBA 3D

is a diagonal tensor whose elements are given by the vector e,.

2.7 Predefined Constants

56

const int DIMENSION = 3;

This is an integer constant giving the dimensionality of the library. It is defined to
be equal to 2 if the 2-D version of the library is being used.

extern
extern
extern

extern

const Vector ZeroVector;
const Tensor ZeroTensor;
const AntiTensor ZeroAntiTensor;

const SymTensor ZeroSymTensor;

These are objects of the various classes whose components are all zero.

extern

extern

const Tensor IdentityTensor;

const SymTensor IdentitySymTensor;

These are objects of the given classes corresponding to the identity tensor, which
is the tensor that transforms any vector into itself. The off-diagonal components
are zero and the diagonal components are equal to one in any coordinate system.
The identity tensor is symmetric and is given in both symmetric and full tensor
representations.

The PHYSLIB Library

(This page intentionally left blank)

The PHYSLIB Library

58

Using the PHYSLIB classes

3. Using the PHYSLIB classes

The classes defined in PHYSLIB are essentially new arithmetic types analogous to the
predefined int, float, and double types. Their use is illustrated by the program
fragment below:

#include “physlib.h” // The example is 3-D

VAP

const Tensor One(l., 0., 0.,

Tensor GradVel; // Velocity gradient
SymTensor Deformation, deformation, Stretch, Stress;
AntiTensor W, Omega;

Vector omega;

/* .0 %/

Deformation = Sym({Gradvel) ;
W = Anti(GradVel);

/* Integrate rotation and stretch tensors */

omega = 2.*Inverse(Tr(Stretch)*One - Stretch) *

Dual (GradVel*Stretch);

Omega = 0.5*Dual {(omega) ;

Rotation = Inverse(One - 0.5*delT*Omega) * (One +

59

Using the PHYSLIB classes

0.5*delT*Omega) *Rotation;

Stretch += Sym(delT* (Gradvel*Stretch-Stretch*Omega)) ;

/* Calculate unrotated deformation and determine rotated
stress */

deformation = Sym(Trans (Rotation) *Deformation*

Rotation);

Stress = Sym(Rotation *

ComputeStress (deformation, delT) * Trans(Rotation));

This particular program fragment is taken from the internal forces routine in RHALE++.
The velocity gradient is decomposed into its rotation and stretch rate components, the ro-
tation and stretch are updated to the new time, and the deformation rate is rotated to the
material configuration for the calculation of the new stress (which is done in the user-de-
fined routine SymTensor ComputeStress (SymTensor&, double)). The new
stress is then rotated back to the laboratory configuration.

3.1 Useless Operations

Certain operations are mathematically well-defined but useless. For example, the trace or
the determinant of an antisymmetric tensor is well-defined but trivially zero. The trans-
pose of a symmetric tensor is itself. These operations are not explicitly defined in
PHYSLIB, but if the programmer were to write code such as

Antitensor a;

double b;
/* ... %/
b = Tr(a);

the code would compile and run normally. The compiler recognizes that there is a standard
conversion from Ant i Tensor to Tensor. This conversion is called for a and the result
is passed to Tr (Tensor), which returns the cormrect value of 0.

Obviously, programmers should avoid such useless constructs, since they needlessly con-

sume time and memory. Some users may wish to comment out the standard conversions
responsible for permitting useless code.

60

Conclusion

PHYSLIB defines vector and tensor classes that are fundamental to the RHALE++ pro-
gramming effort, but which are general and should be useful in many scientific applica-
tions.

These classes are fundamental components of field classes that represent vector and tensor
fields ot various types relevant to finite element calculations. These are essentially smart
arrays of vectors or tensors with corresponding operations and methods. The arrays are de-
fined on a domain represented by a mesh class. Calculus operations such as divergence or
gradient are defined in these libraries.

These tield classes which utilize the PHYSLIB classes are the subject of a future docu-
ment.

61

62

(This page intentionally left blank)

References

[1] M.A.Elis and B.Stroustrup, The Annotated C++ Reference Manual. 1990. Reading,
MA: Addison-Wesley Publishing Company.

[2] L.E.Malvern, latroduction to the Mechanics of a Continuous Medium, 1969. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc.

63

64

(This page intentionally left blank)

Index of Operators and Functions

A

AntiTensor Anti(const Tensor) 53

AntiTensor Dual(const Vector) 50

AntiTensor operator-(const AntiTensor, const AntiTensor) 48
AntiTensor operator-(void) 41

AntiTensor operator*(const AntiTensor, const double) 44
AntiTensor operator*(const double, const AntiTensor) 44
AntiTensor operator+(const AntiTensor, const AntiTensor) 47
AntiTensor operator/(const AntiTensor, const double) 45
AntiTensor& operator*=(const double) 45

AntiTensor& operator+=(const AntiTensor) 4%

AntiTensor& operator/=(const double) 46

AntiTensor& operator=(const AntiTensor&) 38

AntiTensor& operator-=(const AntiTensor) 49
AntiTensor(const AntiTensor&) 38

AntiTensor(const double, const double, const double) 37
AntiTensor(void) 37

D

double Colon{const AntiTensor, const AntiTensor) 53
double Colon(const SymTensor, const SymTensor) 53
double Colon{const Tensor, const Tensor) 53

double Det(const SymTensor) 51

double Det(const Tensor) 51

double It(const AntiTensor&) 55

double HIt(const SymTensor&} 55

double IIlt(const Tensor&) 55

double It(const AntiTensor&) 54

double IIt(const SymTensor&) 54

double I[it(const Tensor&) 54

double [t(const AntiTensor&) 54

double It(const SymTensor&) 54

double It(const Tensor&) 54

doubie Norm(const Vector) 51

double operator*(const Vector, const Vector) 43
double Tr{const SymTensor) 52

double Tr(const Tensor) 52

double X(void) 22

double XX(void) 27.33
double XY (const double) 39
double XY(void) 27.34.38
double XZ(const double) 39
double XZ(void) 28, 34,38
double Y(void) 23

double YX(void) 28

double YY(void) 28,34

65

double YZ(const double) 39
double YZ(void) 28, 34,39
double Z(void) 23

double ZX(void) 28

double ZY (void) 29

double ZZ(void) 29, 35

|

int fread(AntiTensor&, FILE*) 40

int fread(AntiTensor*, int, FILE*) 40

int fread(SymTensor&, FILE¥*) 36

int fread(SymTensor*, int, FILE*) 36

int fread(Tensor&, FILE*) 31

int fread(Tensor*, int, FILE#*) 31

int fread(Vector&, FILE*) 24

int freadl(Vector*, int, FILE*) 24

int fwrite(const AntiTensor*, const int, FILE*) 40
int fwrite(const AntiTensor, FILE*) 40

int fwrite(const SymTensor*, const int, FILE*) 36
int fwrite(const SymTensor, FILE*) 36

int fwrite(const Tensor*, const int, FILE*) 31

int fwrite(const Tensor, FILE*) 31

int fwrite(const Vector*, const int, FILE*) 24

int fwrite(const Vector, FILE*) 24

S

SymTensor Deviator(const SymTensor) 54

SymTensor Inverse(const SymTensor) 52

SymTensor operator-(const SymTensor, const SymTensor) 48
SymTensor operator-(void) 41

SymTensor operator*(const double, const SymTensor) 44
SymTensor operator*(const SymTensor, const double) 44
SymTensor operator+(const SymTensor, const SymTensor) 47
SymTensor operator+=(const SymTensor) 48

SymTensor operator/(const SymTensor, const double) 45
SymTensor Sym(const Tensor) 53

SymTensor& operator*=(const double) 45

SymTensor& operator/=(const double) 46

SymTensor& operator=(const SymTensor&) 33

SymTensor& operator-=(const SymTensor) 49
SymTensor(const double, const double, ... , const double) 33
SymTensor(const SymTensor&) 33

SymTensor(void) 32

T

Tensor Deviator(const Tensor) 54

Tensor Eigen(const SymTensor, Vector&) 55

Tensor Inverse(const Tensor) 52

Tensor operator%(const Vector, const Vector) 43

Tensor operator-(const AntiTensor, const SymTensor) 48

66

Tensor operator-(const AntiTensor, const Tensor) 48
Tensor operator-(const SymTensor, const AntiTensor) 48
Tensor operator-(const SymTensor, const Tensor) 48
Tensor operator-(const Tensor, const AntiTensor) 48
Tensor operator-(const Tensor, const SymTensor) 48
Tensor operator-(const Tensor, const Tensor) 48

Tensor operator-(void) 41

Tensor operator*(const AntiTensor, const SymTensor) 47
Tensor operator*(const AntiTensor, const Tensor) 47
Tensor operator*(const double, const Tensor) 44

Tensor operator*(const SymTensor, const AntiTensor) 47
Tensor operator*(const SymTensor, const SymTensor) 47
Tensor operator*(const SymTensor, const Tensor) 47
Tensor operator*(const Tensor, const AntiTensor) 47
Tensor operator*(const Tensor, const double) 44

Tensor operator*(const Tensor, const SymTensor) 47
Tensor operator*(const Tensor, const Tensor) 47

Tensor operator+(const AntiTensor, const SymTensor) 47
Tensor operator+(const AntiTensor, const Tensor) 47
Tensor operator+(const SymTensor, const AntiTensor) 47
Tensor operator+(const SymTensor, const Tensor) 47
Tensor operator+(const Tensor, const AntiTensor) 47
Tensor operator+(const Tensor, const SymTensor) 47
Tensor operator+(const Tensor, const Tensor) 47

Tensor operator/(const Tensor, const double) 45

Tensor operator/=(const double) 46

Tensor Trans(const Tensor) 52

Tensor& operator*=(const double) 45

Tensor& operator+=(const AntiTensor) 48

Tensor& operator+=(const SymTensor) 48

Tensor& operator+=(const Tensor) 48

Tensor& operator-=(const AntiTensor) 49

Tensor& operator=(const AntiTensor) 27

Tensor& operator-=(const SymTensor) 49

Tensor& operator=(const SymTensor) 27
Tensor& operator=(const Tensor&) 26

Tensor& operator-=(const Tensor) 49

Tensor(const AntiTensor) 26

Tensor(const double, const double, .., const double) 25
Tensor(const SymTensor) 26

Tensor(const Tensor&) 26

Tensor(void) 25

\'

Vector Cross(const Vector, const Vector) 50

Vector Dual(const Tensor) 50

Vector operator-(const Vector, const Vector) 44
Vector operator-(void) 41

Vector operator*(const AntiTensor, const Vector) 46
Vector operator*(const double, const Vector) 41

67

Vector operator*(const SymTensor, const Vector) 46
Vector operator*(const Tensor, const Vector) 46
Vector operator*(const Vector, const AntiTensor) 46
Vector operator*(const Vector, const double) 41
Vector operator*(const Vector, const SymTensor) 46
Vector operator*(const Vector, const Tensor) 46
Vector operator+(const Vector, const Vector) 43
Vector operator/(const Vector, const double) 42
Vector& operator*=(const double) 42

Vector& operator+=(const Vector) 44

Vector& operator/=(const double) 42

Vector& operator=(const Vector&) 22

Vector& operator-=(const Vector) 44

Vector(const double, const double, const double) 22
Vector(const Vectorse) 22

Vector(void) 22

void XX (const double) 29,35

void XY (const double) 29,35

void XZ(const double) 30, 35

void Y X(const double) 30

void Y'Y (const double) 30,35

void YZ(const double) 30, 36

void Z(const double) 24

void ZX(const double) 30

void ZY (const double) 31

void ZZ(const double) 31, 36

X
X{(const double) 23

Y
Y (const double) 23

Y4
Z(void) 22

68

1. External Distribution

R. W. Alewine
DARPA/RMO

1400 Wilson Blvd.
Arlington, VA 22209

R. T. Allen

Pacifica Technology
P.O. Box 148

Del Mar, CA 92014

Alhant Techsystems Inc. (2)
Aun: G.R.Johnson

0. Souka
7225 Northfand Dr.
Brooklyn Park. MN 55428

M. Alme

Logicon RDA

2100 Washington Blvd.
Arlington. VA 22204-5706

Anatech International Corporation (2)
Attn: R.S. Dunham
R. E. Nickell
Joe Rashid
3344 N. Torrey Pines Ct.
Suite 320
LaJolla, CA 92037

James C. Almond
Director

Center [or High Performance Computing

Balcones Resceurch Center
10100 N. Burnct Road
Austin, TX 78738-4497

Dan Anderson

Ford Motor Co.

Suile 110

Village Place

22400 Michigan Ave.
Decarborn, M1 48124

Distribution

Andy Arenth

Nabienad Scecurnily Agency
Savage Road

Ft. Meade, MD

Attn: C6

Ali S. Argon

Departrnent of Mechamenl Engineermg
Room 1-304

Massachusetts Instuitate of Teclhnology
Cambridge, MA 03139

S. Atluri

Center for the Advancement of Computationad
Mechanics

School of Civil Engincering

Georgia Institute of Technology

Atlanta, GA 30332

D. M. Austin

Army High Perf. Comp. Resch. Cotr.
University of Minnesota

1300 S. Second St

Minneapolis, MN 55415

William E. Bachrach

Acrojet Research Propulsion Institute
P.O. Box 13502

Sacramento, CA 95853-4502

F. R, Bailey

MS2(X)-4

Director. Actrophysics

NASA Ames Rescarch Center
Moffett field, CA 94035

R.E. Bank

Department of Mathematics
University of California at San Dicgo
LaJolla, CA 9203Y

(Y

Ken Bannister

US Anny Ballistic Research Laboratory
SLCBR-IB-M

Aberdeen Proving Grounds, MD 21005-5066

W. Beck

AT&T Pixel Machines, 4]-214
Crawflords Corner Road
Homdel, NJ 07733-1988

T. Belytschko

Departiment of Civil Engineering
Northwestern University
Evanston, IL 60201

M. R. Berg

Organization 62-30
Building 150

Lockheed

1111 Lockheed Way
Sunnyvale, CA 94089-3504

B. W. Boehm
DARPA/ISTO

1400 Wilson Blvd.
Arlington, VA 22209

D. Brand

MS N8930

Geodynamics

Falcon AFB, CO 80912-5000

Larry Brown

Instrumentation Development
Denver Research Institute
University Park

Denver, CO 80208

John Brunet
245 First Street
Cambridge, MA 02142

B.L. Burbee

Scientific Computing Departinent
NCAR

P.O. Box 3000

Boulder, CO 80307

Gene Carden

University of Alabama

PO Box 870278
Tuscaloosa, AL 35487-0278

70

Art Carlson

Naval Ocean Systems Center
Code 41

New London, CT 06320

Bonnie C. Carroll, Sec. Dir.
CENDI

Information International
P.O. Boix 4141

Ouk Ridge, TN 37831

J. M. Cavallini, Act. Dir.
Scientific Computing Staff
Office of Energy Research
U.S. Department of Energy
Washington, DC 20545

John Champine

University and Government R&D Prog. Mgr.
Software Division

Cray Research Inc.

655F Lone Oak Dr.

Eagan, MN 55121

T. F. Chan

Mathematics Department

University of California at Los Angeles
405 Hilgard Avenue

Los Angeles, CA 90024

J. Chandra

Anny Research Office

P.O. Box 12211

Rescarch Triangle Park, NC 27709

Chuck Charman

GA Technologies
P.O. Box 81608

San Diego, CA 92138

Warren Chernock
Scientific Advisor

DP-1

U.S. Department of Energy

Forrestal Building 4A-045
Washington, DC 20585

Ken K. Chipley

Martin Marnietta Energy Systems
P.O. Box 2009

Oak Ridge, TN 37831-8053

Ken P. Chong

Department of Civil Engineering
University of Wyoming
Laramie, WY 82071

Yong-il Choo

Organization 81-12
Building 157

Lockheed Company

1111 Lockheed Way
Sunnyvale, CA 9408%-3504

S. C. Chou

U.S. Anny Materials Technology Laboratory

SLCMT-BM
Watertown, MA 02172-0001

Tien S. Chou

EG&G Mound

P.0O. Box 3000
Miamisburg, OH 45343

Eric Christiansen

NASA Johnson Space Center
Space Science Branch/SN3
Houston, TX 77058

M. Ciment, Deputy Dir.

Advanced Scientific Computation Div.

RM 417
National Science Foundaition
Washington, DC 20550

Dwight Clark

Morton Thiokol Corporation
P.0O. Box 524

Mail Stop 281

Brigham City, UT 84302

Richard Claytor, AssL. Secty.
Defense Programs, DE-1
Forrestal Building 4A-014
U.S. Department of Energy
Washington, DC 20550

T. Cole
MS 180-500

Chief Technologist, Ofc. of Tech. Div.

Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, CA 91109

T. F. Coleman

Computer Science Department
Cornell University

Ithaca, NY 14853

S. Colley

NCUBE

19A Davis Drive
Belmont, CA 94002

Gerald Collingwood
Morton Thiokol Corporation
Huntsville, AL 35807

John Collins

U.S. Air Force Armament Laboratory
Computational Mechanics Branch
Eglin AFB, FL 32542-5434

C. H. Conley

School of Civil and Environmental Engineering
Hollister Hall

Corncll University

Ithaca, NY 14853

David L. Conover

Swanson Analysis Systems Inc.
Johnson Road, P.O. Box 65
Houston, PA 15342-0065

J. Corones

Ames Laboratory

236 Wilhelm Hall
Iowa State University
Ames, IA 50011-3020

Ms. C. L. Crothers

IBM Corporation

1472 Wheelers Farms Road
Milford, CT 06460

). K. Cullum

Thomas J. Watson Research Center
P.O.Box 21%

Yorktown Heights, NY 10598

lan Cullis

XTZ Division

Royal Armament R&D Establishment
Fort Halstead

Sevenoaks, Kent

United Kingdom

71

Richard E. Danell

Rescearch Officer

Central Research Laboratories
BHP Research & New Technology
P.O. Box 188

Wallsend NSW 22587

Australia

L. Davis

Executive Vice President
Cray Research Inc.

1168 Industrial Blvd.
Chippawa Falls, W1 54729

DARPA/DSO (2)
Attn: L. Auslander
H.L. Buchanan
1400 Wilson Blvd,
Arlington, VA 22209

Defense Advanced Research Projects Agency (3)

Atn: Lt. Col. Joseph Beno
T. Kiechne
J. Richardson
1500 Wilson Boulevard
Arlingion, VA 22209-2308

Mr. Frank R. Deis
Martin Manietta
Falcon AFB, CO 8(0912-5000

R. A. DeMillo

Director, Comp. & Comput. Resch.

Rm. 304
National Science Foundation
Washington, DC 20550

L. Deng

Applied Mathematics Department
SUNY at Stony Brook

Stony Brook, NY 11794-3600

A. Trent DePersia
Program Manager
DARPA/ASTO

1400 Wilson Blvd.
Arlington, VA 22209-2308

Ramji Digumarthi

Org. 8111, Bldg. 157
Lockhecd MSD

P.O. Box 3504

Sunnyvale, CA 94088-3504

J. Donald Dixon

Spokane Rescarch Center
U.S. Bureau of Mines
315 Montgomery Avenue
Spokane, WA 99207

1. J. Dongarra

Computer Scicnce Department
104 Ayres Hall

Universitly of Tennessee
Knoxville, TN 37996-1301

L. Dowdy

Computer Science Department
Vanderbilt University
Nashville, TN 37235

L. S. Duff

CSS Division

Harwell Laboratory
Oxlordshire, OX11 ORA
United Kingdom

S. C. Eisenstat

Computer Science Department
Yale University

P.O. Box 2158

New Haven, CT 06520

H. Elman

Computer Science Departiment
University of Maryland
College Park, MD 20842

Julius W_ Enig

Enig Associates, Inc.

11120 New Hampshire Ave.
Suite 500

Siver Spring, MD 20904-2633

J. N. Entzminger
DARPA/TTO
1400 Wilson Blvd.

Arlington, VA 22209

A. M. Erisman

MS 7L-21

Bocing Computer Services
P.0O. Box 24346

Secattle, WA 98124-0346

Doug Everhan
Baticlle Menionai nstitite
S05 King Ave.
Columbus, OH 43201-2693

R. E. Bwing

Muthernstios Departiment
University of Wyoring

P.O. Box 4130 University Station
Laramic, WY «2871

Enc Fahrenthiold

Department of Mechanical Engineering
The University of Texas al Austin
Austin, TX 78712

H. . T

Institnre for Advanced Technology
40322 W, Braker Lane

Austn, TX 78754

Kurt D. Fickie

1L.S. Amy Ballistie Research Lub

Atin: SLOBR-SE

Ahcrdeen Prowving Groagnd, MDY 21005-3066

Stan Fink

TRW Delense Sylems Group
Bldg. 134-904%

One Space Pk

Redondo Beacl, CA 90278

J. E. Flahertv

Conmputer Scieaes Department
Rensselacr Polyvtechnic Institute
Troy, NY [21¥]

L. D. Fosdick

University ol Colorado
Computer Scienee Department
Campus Box 430

Boulider, €Oy 86300

G.C.Fox

Director

Northeast Parallel Architecture Center
[11 Colfege Place

Syracuse, NY 13244

R. F. Freuad

Naval Occan Systems Center
Code 425

San Diego, CA Y9 152-5000)

sverte Froven

Solar Energy Rescureh Inst
1617 Cole Blvd.

Golden, CO RO401

D. B. Guannon

Computer Science Department
Indiana Vniversity
Bloomingion, IN 474010

Russel Garnsworthy

CRA Advanced Tech Development
G.P.O. Box 384D

Melbourne 3001

Australia

Co W, Gear

NEC Resewrch Institute
4 Independence Way
Princeton, NJ (08548

I AL George

Academic Vice President and Provost
Needleg Hall

lroversity of Waterloo

Waterfoo, Oniarie, Camiedic N2L 3G

1. Glimm

Dept. of Applied Matliematics

State University of New York At Stony Brook
Stony Brook, NY 11794-3600

G. H. Golub

Computer Science Department
Stantord University

Stanlord, CA 94305

J. Gustafson

Compuler Science Departinent
236 Wilhelhn Hall

Towa State University

Ames, 1A S00TL

Dr. James P. Hurdy
NTBIC/GEODYNAMICS
MS N8Y30

Falcon AFB, CO 80912-5000

M. T. Heath

Bldg. 9207-A

Ok Redee Natonal Laboratory
P.O.Box 4141

Oak Ridge, TN 37831

73

Brent Henrich Mr. Daniel Holtzman

Mobile R&D Laboratory Vanguard Research, Inc.
13777 Midway Rd. 10306 Eaton Place, Suite 450
P.O. Box 819047 Fairfax, VA 22030-2201

Dallas, TX 75244-4312
C. J. Holland, Director

Steve Herrick Math and Information Sciences
Textron Defense Systems AFOSR/NM, Bolling AFB
Mail Stop 1115 Washington, DC 20332-6448
201 Lowell St.
Wilmington, MA 01887 David A. Hopkins
U.S. Army Ballistic Research Laboratory
Hibbitt, Karlsson & Sorensen, Inc. (5) Aln: SLCBR-IB-M
Attn: David Hibbitt Aberdeen Proving Ground, MD 2 1005-5066
Joop Nagtegaal
D.P. Flanagan Williai Hufferd
L.M. Taylor United Technologies
W.C. Mills-Curran Cheinical Systems Divison
100 Medway St. P.O. Box 50015
Providence, RI 02906 San Jose, CA 95150-0015
Scott Hill T.J.R. Hughes
NASA Marshall Space Flight Center Department of Mechanical Engineering
Mail Code ED52 Stanford University
Redstone Arsenal Palo Alto, CA 94306
Huntsville, AL 35812
James P. Johnson
W. D. Hillis Technology Development
Thinking Machines, Inc. Rm L 120, CPC Analysis Departient
245 First St. General Motors Corporation
Cambridge, MA 02139 Engineering Center
30003 Van Dyke Avenue
Emil Hinrichs Warren, MI 48090-9060
Manager, Computer Center
Geco-Prakla Jerome B. Johnson
Bucholzer StraBe 100 USACRREL
P.0O. Box 510530 Building 4070
D-3000 Hannover 51 Ft. Wainwright, AK 99703
Germany
Gordon R. Johnson
LTC Richurd Hochbewrg Honcywell, Inc.
SDIO/SDA 5901 S. County Rd. 18
The Pentagon Edina, MN 55436
Washington, DC 20301-7100
G. S. Jones
Dr. Albert C. Holt Submarine Tech Program Support Center
Office of Munitions DARPA/AVSTO
Office of the Secretary of State 1515 Wilson Blvd.
ODDRE/TWP Arlington, VA 22209

Pentagon, Room 3B 1060
Washington, DC 20301-3100

74

James W. Jones

Swanson Service Corporation
18700 Beach Blvd.

Suile 200-210

Hunungton Beach, CA 92648

T. H. Jordan

Department of Earth, Atmospheric and Planetary
Sciences

MIT

Cambridge, MA (02139

M.H. Kalos, Director

Comell Theory Center

514A Engineening and Theory Center
Hoy Road, Comell University

Ithaca, NY 14853

Kaman Sciences Corporation (2)
Attn: S. Diehl

V. Smith
1500 Garden of the Gods Road
Colorado Springs, CO 80933

H. G. Kaper

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439

S. Karin, Director

Supercomputing Department

9500 Gilman Drive

University of California at San Diego
La Jolla, CA 92009

Dr. A.H. Kazi, Director

Nuclear Effects Directorate

U.S. Army Combat Systems Test Activity
Aberdeen Proving Ground, MD 21005-5059

H. B. Keller

217-50

Applicd Mathematics Department
Caltech

Pasadena, CA 91125

M. I. Kelley
DARPA/DMO

1400 Wilson Blvd.
Arlington, VA 22209

K. W. Kennedy

Computer Science Department
Rice University

P.O. Box 1892

Houston, TX 77251

Gary Ketner

Research Engineer

Applied Mechanics and Structures
Battelle Pacific Northwest Laboratories
P.O. Box 999

Richland, WA 99352

Dr. Aram K. Kevorkian
Code 7304

Naval Ocean Systems Cenler
271 Catalina Blvd.

San Diego, CA 92152-5000

Sam. Key
MacNeal-Schwendler
815 Colorado Blvd,
Los Angeles, CA 90041

D. R. Kinkaid

Center for Numerical Analysis
RLM 13-150

University of Texas at Austin
Austin, TX 78712

T. A. Kitchens

Office of Energy Research
U.S. Department of Energy
Washington, DC 20554

Max Koontz
DOE/OAC/DP 5.1
Forrestal Building

1000 Independence Ave.
Washington, DC 20585

Dr. Peter L. Knepell
NTBIC/GEODYNAMICS
MS N-8930

Falcon AFB, CO 80912-5000

Raymond D. Krieg

Engineering Science and Mechanics
301 Perkins Hall

University of Tennessee

Knoxville, TN 37996

75

V. Kumar

Computer Science Department
University of Minnesota
Minneapolis, MN 55455

J. Lannuti

MS B-186

Director, Supercomputer Research Inst.
Flonda State University

Tallahassee, FL 32306

P. D. Lax

New York University- Courant
251 Mercer St.

New York, NY 10012

JK. Lee

Department of Engincering Mechanics
Ohio State University

Columbus, OH 43210

Lawrence A. Lee, Executive Director
North Carolina Supercomputing Center
P.O. Box 12889

3021 Cornwallis Road

Research Triangle Park, NC 27709

David Levine

Mathematics and Computer Science
Argonne National Laboratory

9700 Cass Avenue South

Argonne, IL 60439

Trent R. Logan

Rockwell International Group
Mail Code NA40

12214 Lakewood Blvd.
Downey, CA 90242

Mr. Louis S. Lome
SDIO/TNI

The Pentagon

Washington, DC 20301-7100

G. Lyles

CIA

6219 Lavell Ct,
Springfield VA 22152

S. F. McCormick

Computer Mathematics Group
University of Colorado at Denver
1200 Larimar St.

Denver, CO 80204

76

Frank Maestas

Principal Engineer

Applied Research Associates
4300 San Mateo Blvd.

Suite A220

Albuquerque, NM 87110

H. Mair (5)

Naval Surface Warfare Center

10901 New Hampshire Ave.

Silver Springs, MD 20903-5000

Attn: H. Mair, W. Reed, W. Holt, K.B.Kim,
P_Walters

Mark Majerus

California Research and Technology, Inc.
PO Box 2229

Princeton, NI 08543-2229

T. A. Manteutfel

Department of Mathermatics
University of Colorado at Denver
Denver, CO 80202

Carlos Marino

Industry, Science, and Technology Department

Cray Research Park
655 E. Lone Qak Dr.
Eagan, MN 55121

William S. Mark, Ph.D.
Lockheed - Org. 96-01
Building 254E

3251 Hanover Street

Palo Alto, CA 94303-1191

D. Matuska
Orlando Technology, Inc.

P. O. Box 855
Shalimar, FL 32579

John May (2)

Kaman Sciences Corporation
1500 Garden of the Gods Road
Colorado Springs, CO 80933
Aun: John May and S. Hones

J. Mesirov

Thinking Machines Inc.
245 First Street
Cambridge, MA 94550

P.C. Messina

158-7Y

Mathemaucs and Compuler Science Department
Cadieeh

Pasadena, CA 91125

Craig Miller

Unit 973

General Eleciric Company
Newvtron Devices Departiment
P.O. Box 2908

Largo, FL. 34294-200%

Robert E. Millstein
T™MC

245 First Streel
Cambridge. MA (02142

G. Mohnkern

Navil Ocean Systems Center
Code 73

San Dicgo. CA 92152-5000

C. Moler

The Mathworks

3725 Linfield Place
Menlo Purk, CA 94025

1.J. Murphy

Vehicle Technology 59-22

Bldg 580

Lockheed Missile and Space Co.
P.O. Box 3504

Sunnyvale, CA 94088

V.D. Murty

5000 N. Willamette Blvd.
School of Engineering
University of Portland
Portland, OR 97203

Naval Underwater Systems Center (3)
Atn: Dan Bowlus
G. Letieey
S. Prashaw
Mail Code 8123
Newport, RT 0284 1-5047

C. E. Needham

Maxwell Laboratories, Inc.
2501 Yale S.E.. Suite 300
Albuguerque. NM &7 106

D. B. Nelson., Excec. Dir
Office of Enerpy Research
U.S. Departinent of Energy
Washington, DC 20545

Jim Nemes

Code 6331

Naval Research Laboratory
Washington, DC 20375-5000

William Nester

Oak Ridge National Laboratory
PO Box 2009

Oak Ridge, TN 37831-8058

Jeff Newmeyer

Org. §1-04

Building 157

1111 Lockheed Way
Sunnyvale, CA 94089-3504

Dean Norman

Waterways Experiment Station
P.O. Box 631

Vicksburg. MS 39180

D. M. Nosenchuck

Mech. and Aerospace Engineering Depl.
D302 E. Quad

Princeton University

Princeton, NJ 08544

Office of Naval Research (2)
Attn: Rembert Jones
A.S. Kushner
Structural Mechanics Division (Code 434)
800 N. Quincy Street
Arlington, VA 22217

C. E. Oliver, Director

Office of Laboratory Computing. Bldg. 4 500N
Oak Ridge National Laboratory

P.O. Box 4141

Ouk Ridge. TN 37831-6251

Dennis L. Orphal (3)

California Research & Technology Inc.

5117 Johnson Dr.

Pleasanton, CA 94538

Attn: D.L.Orphal, P.N.Schneidewind, 5.P.Segan

J. M. Ortega

Applied Mathematics Department
University of Virginia
Charlottesville, VA 22903

John Palmer

T™C

245 First Street
Cambrdge, MA 02142

Robert J. Paluck, President
Convex Computer Corporation
3000 Waterview Parkway

P.O. Box 733851

Richardson, TX 75083-3851

Robert Pardue

Martin Marietla

Y-12 Plant, Bldg. 9998
Mail Stop 2

Oak Ridge, TN 37831

Kim Parnell

Failure Analysis Associates, Inc.
149 Commonwealth Ave.

PO Box 3015

Menlo Park, CA 94025

S. V. Parter

Department of Mathematics
Van Vleck Hall

University of Wisconsin
Madison, WI 53706

Dr. Nisheeth Patel

U.S. Ammy Ballistic Research Lab
AMXBR-LFD

Aberdeen Proving Ground, MD 21005-5066

A. T. Patcra

Mcchanical Engineering Department
77 Massachusetts Ave.

MIT

Cambndge, MA 02139

A. Patrinos, Acting Director

Atmos. and Climate Resch. Division
Office of Energy Research, ER-74
U.S. Department of Energy
Washington, DC 20545

78

R. F. Peierls

Mathematics Sciences Group, Bldg. 515
Brookhaven National Laboratory
Upton, NY 11973

K. Perko

Supercomputing Solutions, Inc.
6175 Mancy Ridge Dr.

San Diego, CA 92121

John Petresky

Ballistic Research Lab, Launch & Flight Div.
SLCBR-LF-C

Aberdeen Proving Ground, MD 21005-5006

Mitchell R. Phillabaum
Monsanto Research Corporation
MRC-MOUND

Miamisburg, OH 45342

Phillips Laboratory (3)
Attn: F. Allahadi
D. Fulk
J. Secary
Nuclear Technology Branch
Kirtland AFB, NM 87117-6008

Dr. Leslie Pierre

SDIO/ENA

The Pentagon

Washington, DC 20301-7100

R. J. Plemmons

Department of Mathematics and Computer Science

Wake Forest University
P.O. Box 7311
Winston Salem, NC 27109

John Prentice
Amparo Corporation

3700 Rio Grinde, NW

Suite §
Albuquerque, NM 87107-3042

Peter P. F. Radkowski I11
P.O.Box 1121
Los Alamos, NM 87544

J. Rattner

Intel Scientific Computers
15201 NW Greenbriar Pkwy.
Beaverton, OR 97006

Harold E. Read A.H. Sameh, CSRD

S-Cubed 305 Talbot Laboratory
P.O. Box 1620 University of Illinois
LaJolla, CA 92038-1620 104 S. Wright St.

Urbana, IL 61801
Dr. John P. Reltelle, Jr.

Org. 94-90 Donald W. Sandidge

Lockheed, Bldg. 254G U.S. Army Missile Command
3251 Hanover Street AMSMI-RLA

Palo Alto, CA 94304 Redstone Arsenal, AZ 35898-5247
J.A. Reuscher Steve Sauer

Department of Nuclear Engineering K-Tech Corporation

Texas A & M 901 Pennsylvania N.E.

College Station, TX 77843 Albuquerque, NM 87110

J.R. Rice M. H. Schultz

Computer Science Department Department of Computer Science
Purdue University Yale University

West Lafayette, IN 47907 P.O.Box 2158

New Haven, CT (6520
J. Richardson

DARPA/TTO Dve Schwartz

1400 Wilson Blvd. NOSC, Code 733
Arlington, VA 22209 San Diego, CA 92152-5000
R. Rohani L. Seaman

U.S. Army Engineer Waterways Experiment Station SRI International

Attn: CEWES-SD 333 Ravenswook Ave.
3909 Halls Ferry Road Menlo Park, CA 94025

Vicksburg, MS 39180-6199
A. H. Sherman

C. Rose Scientific Computing Associates, Inc.
Electricite de France Suite 307, 246 Church Street
1 Ave du Gen. De Gaulle New Haven, CT 06510
92141 Elamart
France Dr. Horst D. Simon
Computer Sciences Corporation
R. Z. Roskies NASA Ames Research Center, MS T045-1
Physics and Astronomy Department Moftett Field, CA 94035-1000
100 Allen Hall
University of Pittsburg L. Smarr, Director
Pittsburg, PA 15206 Supercomputer Applications
152 Supercomputer Applications
Y. Saad Bldg. 605 E. Springfield
University of Minnesota Champaign, IL 61801
4-192 EE/CSci Bldg.
200 Union St. Vineet Singh
Minncapolis, MN 55455-0159 Microelectronics and Computer Tech. Corp.

3500 West Balcones Center Dr.
Austin, TX 78759

Mark Smith
Acrophysics Branch

Calspan CorporationfAEDC Operations

MS 440
Arnold AFB, TN 37389

William R. Somsky
Ballistic Research Laboratory
SLCBR-SE-A, Bldg. 394

Aberdeen Proving Ground, MD 21005-5066

D. C. Sorenson

Department of Mathematical Sciences
Rice University

P.O. Box 1892

Houston, TX 77251

Southwest Research Institute (4)
Attn: Charles E. Anderson
C.J Kuhlman
Samit Roy
J1.D. Walker
P.O. Drawer 28510
San Antonio, TX 78284

S. Squires
DARPA/ISTO

1400 Wilson Blvd.
Arlinglon, VA 11109

N. Srinivasan

AMOCO Corporation
P.O. Box 87703
Chicago, IL 60680-0703

D. E. Stein

AT&T

100 South Jefferson Rd.
Whippany, NJ 07981

M. Steuerwalt, Program Directlor
Division of Mathematical Sciences
National Science Foundation
Washington, DC 20550

G. W. Stewart

Computer Science Department
University of Maryland
College Park, MD 20742

O. Storasshi, MS-244

NASA Langley Research Center
Hampton, VA 23665

80

C. Stuart
DARPA/TTO

1400 Wilson Blvd.,
Arlington, VA 22209

LTC James Sweeder
SDIO/SDA

The Pentagon

Washington, DC 20301-7100

D.V. Swenson

Mechanical Engineering Department
Durland Hall

Kansas State University

Manhattan, KS 66506

H.T. Tang

Electric Power Research Ingtitute
3412 Hillview Avenue

P.O. Box 10412

Palo Alto, CA 94304

Sing C. Tang

P.O. Box 2053

RM 3039 Scientific Lab
Dearborn, M1 48121-2053

Bill Tanner

Space Science Laboratory
Baylor University

PO Box 7303

Waco, TX 76798

R. A. Tapia

Mathematical Sciences Department
Rice University

P.O. Box 1892

Houston, TX 77251

Gligor A. Tashkovich
210 Lake Street, Apt. 5F
Ithaca, NY 14850-3854

William J. Tedeschi
DNA/SPSP

6801 Telegraph Rd.
Alexandria, VA 22310

Teledyie Brown Enginecring (2)
Attn: John W._ Woltsherger
B. Singh
Cummings Research Park
A00 Sparkman Dr.. NW
PO Box 07007
Huntsville. AL 35807-7007

David Tenenbaum

U. S. Army Tank Autoinotive Command
RD&E Cenler

Survivahility Division

Mail Code MASTA-RSS

Warren, M1 48397-5000

H. Teutebherg

Cray Rescarch, [ne.

Suite B-4066, 850 Menaul NE
Albuquerque, NM 87112

A. Thaler, Prog. Dir.

Division ol Mathemancal Sciences
Computational Mathematics
National Science Foundation
Washington. DC 20550

John Tipton

U. S. Anny Engineer Division
HNDED-SY

PO Box 1600

Hunisville, AL 35807

Allun Torres
125 Lincoln Ave., Suite 400
Santa Fe, NM 87501

Randy Truman

Mechanical Engineering Department
University of New Mexico
Albuquerque, NM 87131

TRW Corporaten (2)
Attn: Mike Katona
R. Luny
P.O.Box 1310
Bldg 527, Rm 704
San Bernading, CA 91763

U. S. Air Force Armament Laboratory (6)
Attn: Dan Brubaker

R. Hum

S. Joyee

B. Patterson

M. Schuniclt

D. Zappola
Technology Assessment Branch
Eglin AFB, FL. 32542-5434

1).S. Army Ballistic Research Laboratory (9)

Atin: R, Coates

Y. Huang

K. Kimsey

H. Meyer

G. Randers-Pehrson

D. Scheffler

S. Segletes

G. Silsby

B. Sorenson
SLCBR-TB-P

Aberdeen Proving Ground MD 21005-5066

Dept. of AMES R-011 (2)
Attn: David J. Benson

S. Nemat-Nasser
University of California San Diego
La Jolla, CA 92093

Departnent of Aerospace Engineering and
Engineering Mechanics (4)
Attn: E.B. Becker
G F. Carey
J.T. Oden
M. Stern
University of Texas
Austin, TX 78712

George Vandergrift, Dist. Mgr.
Convex Computer Corp.

3916 Juan Tabo NE, Suite 38
Albuquerque, NM 87111

C. VanLoan
Department of Computer Science
Cornell University, Room 5146

lhaca, NY 14853

R. G. Voight, MS 32-C
NASA Langley Research Center, ICASE
Hampton, VA 36665

David Wade, 36E

Belttis Atomic Power Laboratory
P.O.Box 79

West Miftland, PA 15122

81

Krishnan K. Wahi
Gram, Inc.

1709 Moon N.E.
Albuquerque, NM 87112

Steven J. Wallach, Sr. VP, Technology
Convex Computer Corporation

3000 Waterview Parkway

P.O. Box 833851

Richardson, TX 75083-3851

Paul T. Wang

Fabricating Technology Division
Aluminum Company of America
Alcoa Technical Center

Alcoa Center, PA 15069

R.C. Ward, Bld. 9207-A
Mathematical Sciences

Oak Ridge National Laboratory
P.O. Box 4141

Ouk Ridge, TN 37831-8083

Bob Weaver

Idaho National Engineering Lab
M.S. 2603

P.O. Box 1625

Idaho Falls, 1D 83415

Brent Webb

Battelle Pacific Northwest Laboratories
Mail Stop K6-47

PO Box 999

Richland, WA 99352

G. W. Weigand
DARPA/CSTO

3701 N. Farrfax Ave.
Arlinglon, VA 22203-1714

Westinghouse Electric Corporation (4)
Aln: Todd Hoover
Clairc Knolle

Dan Kotcher
Wayne Long

Bettis Atomic Power Laboratory
P.O.Box 79
West Mifflin, PA 15122-0079

M. F. Wheeler

Mathematical Sciences Department
Rice University

P.O. Box 1892

Houston, TX 77251

82

Tomasz Wierzbicki

Department of Ocean Engineering
Bldg. 5-218

Massachuselts Institute of Technology
Cambnidge, MA 02139

B. Wilcox
DARPA/DSO

1400 Wilson Blvd.
Arlington, VA 22209

C. W. Wilson, Program Manager
Emerging Technologies

MS M102-3/B11

Digital Equipment Corporation
146 Main Street

Maynard, MA 00175

P. R. Woodward
Universily of Minnesota
Department of Astronomy
116 Church Street SE
Minneapolis, MN 55455

M. Wunderlich, Director
Mathematical Sciences Program
National Sccurity Agency

Ft. George, G. Mead, MD 20755

Hishashi Yasumori

Staffl Senior General Manager
KTEC-Kawasaki Steel
Techno-research Corporation
Hibiya Kokusai Bldg. 2-3
Uchisaiwaicho 2-chrome
Chiyoda-ku, Tokyo 100
Japan

D. M. Young

Center tor Numerical Analysis
RLM 13.150

Universtiy of Texas at Austin

Austin, TX 78712

Robert Young (2)

Alcoa Laboratories

Alcoa Center, PA 15069

Atin: R. Young, J. McMichael

William Zierke (2)
Applied Research Lab
Penn State University
P.O. Box 30

State College, PA 16804
Attn: W. Zierke, G.T.Yeh

Steve Zilliacus

David Taylor Research Center
Mail Code 1750.1
Bethesda, MD 20084

J.A. Zukas

Computational Mechanics Consultants, Inc.

8600 La Salle Road
Suite 614
Towson, MD 21204

Los Alamos
Mail Station

National Laboratory
5000

P.O. Box 1663
Los Alamos, NM 87545

Altn

Attn:
Attn:
Attn:
Attn:
Atin:
Attn:
Attn:
Attn:
Attn;
Attn:
Attn:
Attn:
Attn:
Altn:
Altn:
Alin:
Attn:
Attn:
Altn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn:
Altn:
Attn:
Attn:
Attn:
Attn:
Alln:
Altn:

Attn;
Alln;
Attn;
Attn:
Attn:
Attn;
Attn:
Attn:
Attn:
Attn:
Atin:
Attn:
Attn:

Altn

- T. F. Adams, MS F6063
J.D. Allen, MS G787
C.A. Anderson, MS J576
S.R. Atlas, MS B258

B. I. Bennett, MS B221
S. T. Bennion, MS F663
W. Birchler, MS G787
P.J. Blewett, MS F663
M. W. Burkett, MS G787
T.A. Buttler, MS 1576
E.J. Chapyak, MS F663
R. A. Clark, MS B257
W.A. Cook, MS K557
G. E. Cort, MS G787

B.]. Daly, MS B216
R.F. Davidson, MS K557
J.F. Davis, MS B294

J. K. Dicnes, MS B216
J.L. Fales, MS J575

H. Flaush, MS C936
P.S. Follansbee, MS G756
D Forslund, MS E531
J.H. Fu, MS G787

S.P. Girrens, MS J576
R. P. Godwin, MS F663
F. Guerra, MS C931

F. Harlow, MS B216

W. B. Harvey, MS F663
R. Hill, MS D449

J.P. Hill, MS C931

B. L. Holian, MS J569
K. S. Holian, MS B221
J. W. Hopson, MS B216
H. Horak, MS C936

M. L. Hudson, MS J970

E.S. Idar, MS G787
D.L. Jaegar, MS K557
J.N. Johnson, MS K557
N. L. Johnson, MS B216
J. F. Kemrisk, MS G787
M. Klein, MS F669

W. H. Lee, MS B226
M.W. Lewis, MS G787
R. Malenfant, MS 1562
D. Mandell, MS F663

L. G. Margolin, MS D406
S. Marsh, MS K557

P.T. Maulden, MS K557
: G. H. McCall, MS B218

83

84

Atin

1 J. K. Meier, MS G787
Attn:
Atutn:
Attn:
Attn:
Attn;
Atin:
Attn;
Atn;
Aftn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn:
Attn;
Attn:

R. W. Meier, MS G787
K.A. Meyer, MS F663
N.R. Morse, MS B260)
D.C. Nelson, MS G787
A.T. Oyer, MS G787
R.B. Parker, MS G787
D.A. Rabem, MS G787
M. Rich, MS F669

P.R. Romero, MS G787
J.J. Ruminer, MS C931
M. Sahota, MS B257
D.J. Sandstorm, MS G756
W. Sparks, MS F663
L.H. Sullivan, MS K557
D. Tonks, MS B267

H. E. Trease, MS B257
B.M. Wheat, MS G787
A.B. White, MS-265
T.F. Wimett, MS J562
L. Witt, MS C936

S. Woodruff, MS K557
Robert Young, MS K574

University of California

Lawrence Livermore National Laboratory
7000 East Ave.

P.O. Box 808

Livermore, CA 94550

Altn: R, R. Borcher, MS L-669
Attn: D. E. Burton, MS L-18
Atin: R. C. Y. Chin, MS L-321
Attn: R, B. Christensen, MS L-35
Attn: R. E. Huddleston, MS L-61
Attn: J. M. LeBlanc, MS L-35
Aitn: J. R, McGraw, MS L-316
Atin: G. A. Michael, MS L-306
Aun: M. J. Murphy, MS L-368
Attn: L. R. Petzold, MS L-316
Attn: J. E. Reaugh, MS L-290
Attn: D, J. Steinberg, MS L-35
Attn: R. Stoudt, MS L-200

Aun: R. E. Tipton, MS L-35
Aun: C. E. Rhoades, MS L-298

1. Internal

1231
1270
1271
1400
1420
1421
1421
1425
1425
1425
1500
1510
1511
1512
1513
1514
1514
1514
1540
1541
1541
1541
1541
1541
1541
1541
1541
1541
1541
1542
1542
1542
1542
1542
1542
1542
1542
1542
1542
1542
1543
1543
1543
1543
1543
1543
1543
1544
1544
1544

T.W.L. Sanford
J.K. Rice

G.0. Allshouse
E.H. Barsis

W.J. Camp

S. S. Dosanjh

R. Gardner
Biffle
Alttaway
Montgomery
Barsis
Cumimings
Rottler
R:
Cur

D.
J.
S.
S.
E.
1.
).
A. wzel
1.

H.
W.
T.
H.
C.
S.
C.
C.

5
C)‘<
=2
=

=

3

Hertcl
. Lawrence
. Peery

. C. Robinson
T. G. Trucano
L. Yarrington
RHALE Day File
P. Yarrington
R. L. Bell
W.T. Brown

J
E.
.E. Fang
V Farnsworth
1. Kerley
- Kipp
. Norwood
. Silling
. Stanton
. Ang
". Chhabildas
. Furnish
. Grady

>

£
o
(¢}

say, Acting
dams
G

WFUI"gquTPr‘}x’m

RO ——SUZCCTeTZO
>3>

E=

mmngs Acting

1544
1544
1544
1544
1544
1544
1544
1544
1544
1545
1545
1545
1545
1545
1545
1545
1545
1545
1545
1545
1545
1545
1550
1551
1552
1553
1554
1555
1556
1600
2513
2513
3141

3141-5

3151
6418
6418
6429
6429
6463
6463
8240
8241
8241
8241
8242
8242
8242
8242
8242
8242
8242
8242
8242

Kephart

J. Mello
E. Metzinger
D. Reedy
W. Schuler
D. Sjaardema
M. Slavin

. Stirbis
K. Thomas
. R. Martinez
.J. Allen
. Branstetter
. Dohner
R. Dohrmann
R. Eisler
T. Foley

W. Lobitz
B. Longcope
. L. Marek
. Pout
. R.Red-Horse
. K.

D.
D.
J
]
D.
C.
J
D

E.
F.J
K.
E.
K.
G.
A.
pP.P
R.
D
J
L
J
C.
G.

J.
E

J. Segalman
W. Peterson
Cole

D. McBride

L. Hermina

P. Aeschliman

P. Wolfe

W. L. Oberkampf

W. Herrmann

D. E. Mitchell

S.H. Fischer

Technical Library (5)

Document Processing for DOE/OSTIL (8)
Technical Communications (3)

S. L. Thompson

L. N. Kmetyk

K. E. Washington

R. W. Ostensen

M. Berman

K. Boyack

C. W. Robinson

G. A. Benedetti

M. L. Chiesa

L. E. Voelker

M. R. Birnbaum

J. L. Cherry

1. 1. Dike

B. L. Kistler
A. McDonald
V. D. Revelli
L.

K.
L.

w.
D.
w

1. Wcingarten

85

8243
8243
8243
8244
8244
82445
8245
8523
9014
9122
9123
9123
9123
9311
9311

86

M. L. Callabresi
D.J. Bammann
V. K. Gabrielson
S. K. Griftiths
C. M. Hartwig
R.J. Kee

W. E. Mason
R. C. Christinan
J. W. Keizur

R. O. Nellums
J. M. Holovka
M. J. Forrestal
J. T. Hilchcock
A.J. Chabai

T. Bergstresser

	CONTENTS
	ACKNOWLEDGMENT
	PREFACE
	SUMMARY
	1. INTRODUCTION
	1.1 VECTOR AND TENSOR OPERATIONS AND NOTATION
	1.2 OBJECT-ORIENTED PROGRAMMING AND THE C++ LANGUAGE

	2. THE PHYSLIB LIBRARY
	2.1 CLASS VECTOR
	2.2 CLASS TENSOR
	2.3 CLASS SYMTENSOR
	2.4 CLASS ANTITENSOR
	2.5 OPERATOR OVERLOAD FUNCTIONS
	2.6 METHODS
	2.7 PREDEFINED CONSTANTS

	3. USING THE PHYSLIB CLASSES
	3.1 USELESS OPERATIONS

	CONCLUSION
	REFERECES
	INDEX OF OPERATORS AND FUNCTIONS
	DISTRIBUTION

